MNSC100CC/D
Rev. 2.0, 11/2001

STAR CORE

SC100 C Compiler User’s Manual

MOTOROLA ot systems

digitaldna 08'9 re

MNSC100CC/D
Rev. 2.0, 11/2001

SC100 C Compiler

User’'s Manual

BRIGHTER” DSP TECHNOLOGY!

STA RZ ﬁ?com.'—'

systems

agere

MOTOROLA

digitaldna”

This document contains information on a new product. Specifications and information herein are subject to change
without notice.

© Copyright Agere Systems Inc., 2001. All rights reserved.

© Copyright Motorola Inc., 2001. All rights reserved.

LICENSOR is defined as either Motorola, Inc. or Agere Systems, Inc., whichever company distributed this document to
LICENSEE. LICENSOR reserves the right to make changes without further notice to any products included and
covered hereby. LICENSOR makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does LICENSOR assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation incidental, consequential, reliance,
exemplary, or any other similar such damages, by way of illustration but not limitation, such as, loss of profits and loss
of business opportunity. "Typical" parameters which may be provided in LICENSOR data sheets and/or specifications
can and do vary in different applications and actual performance may vary over time. All operating parameters,
including "Typicals" must be validated for each customer application by customer’s technical experts. LICENSOR does
not convey any license under its patent rights nor the rights of others. LICENSOR products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support life, or for any other application in which the failure of the LICENSOR product could create a
situation where personal injury or death may occur. Should Buyer purchase or use LICENSOR products for any such
unintended or unauthorized application, Buyer shall indemnify and hold LICENSOR and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended
or unauthorized use, even if such claim alleges that LICENSOR was negligent regarding the design or manufacture of
the part.

Motorola and the Motorola DigitalDNA insignia are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer. Agere, Agere Systems, and the Agere Systems insignia are trademarks of
Agere Systems Inc. Agere Systems Inc. is an Equal Opportunity/Affirmative Action Employer.

StarCore is a registered trademark of Motorola, Inc. It is used by Agere Systems with the authorization of Motorola.

All other tradenames, trademarks, and registered trademarks are the property of their respective owners.

11
12
13
131
132

21
211

31

311
312
3.13
314
3.2

321

3211
3212

33
331

3311
3312
3.3.13

332

Table of Contents

About This Book

AUAIENCE. . .o Xvili
Organizationttt XVii
Suggested Readingo oo e XViii
REfEreNCeS.o Xviii
CONVENLIONS . . .ottt e e e e e XViii
Acronymsand Abbreviations. XViii
ReVISONHIStOrY e e Xviii

Chapter 1

Introduction

Overview of the SCI00 C Compiler.t e 1-1
The Cross-File Optimization Approach 1-2
Compiling AppliCatioNSt e 1-3
TheCompiler Shell Program e 1-3
Stagesinthe C Compilation Process, 1-4

Chapter 2

Getting Started

A QUICK Start ... e 2-1
Creating and ExecutingaProgram. 2-1

Chapter 3

Using the SC100 C Compiler

TheShell Program e e e 31
The CCompilation Process e 3-2
Cross-File Optimizationt e e 34
File Typesand EXIENSIONSot e e e e 3-7
Environment Variables. 39
Invokingthe Shell. 39
Command Line SyntaXco vt e 39
CommandLineSyntax Rules. 39
Command Files. o 3-10
Shell Control OptioNS.o e e 3-10
Controlling the Behavior of theShell 3-14
Controlling where the shell stopsprocessing...................... 3-14
Specifying ashell commandfile................................ 3-15
Displayingtheshell Helppage.o ... 3-15
Specifying PreprocessingOptionso 3-16

SC100 C Compiler iii

3321 Changing preprocessed OUtpULttt 3-16

3.322 Defining and undefining preprocessor macros.ccovven. .. 3-17
3.3.23 Adding directoriesto the #includefilepath 3-17
3.33 Overiding Input FileExtensions, 3-18
3.34 Output Filenameand LocationOptionsci i 3-19
3.35 Specifying CLanguage Options.t 3-20
3.351 Definingthelanguageversion o i, 3-20
3.352 Adding debugging informationtofiles........................... 3-20
3.35.3 Changing the default char signsetting, 3-20
3.354 Indicating fractional data-typesinsaturation...................... 321
3.36 Passing Options Through to SpecificTools. 321
3.37 Setting the Optionsfor ListingsandMessages.cvvnen... 3-22
3371 Generating listingfiles i 3-22
3.37.2 Controlling the type of informationdisplayed 3-23
3.3.7.3 SUPPreSSING WarNiNgS . « .« o v ov et e ettt ettt 3-23
3374 Reporting all remarksandwarnings. 3-23
3.38 Specifying the Hardware Model and Configuration. 3-24
3381 Definingthearchitecture i 3-24
3.382 Configurationand Startupfiles. i ... 3-24
3.39 SPeCifyiNgMOdESo 3-25
3391 Specifyingbigmemory mode. i 3-25
3.392 Specifyingtingmemory mode 3-25
3.393 Copying initialized variablesfromROM 3-25
3.394 Specifying big-endianmode. 3-25
34 Language Features e 3-26
34.1 ClLanguageDialects.t e 3-26
3411 Standard EXtENSIONSo 3-26
34.1.2 KE&R/IPCCMOOE. . ..ot e e 3-31
34.2 Typesand SIZeSot e 3-36
34.21 A At eSS . . o 3-37
3422 1 =70 T £ 3-38
3423 Floating point e e e 3-39
34.24 Fractional representation. i 3-40
34.25 POINE NS . . o 3-40
34.26 Bit-fields. 3-40
34.3 Fractional and Integer Arithmetic. 3-42
344 INtrNSICFUNCLIONS e 3-45
3441 Datatypesforintrinscfunctions. 3-45
34.4.2 Intrinsic function categories.t 3-46
3443 Intrinsic functionsexamples.o i 3-51
345 Pragmas. 3-52
3451 00 12 3-52
3452 Placement 3-52
3453 Pragmaswhichapply tofunctions 3-54
3454 Pragmaswhich apply tostatements 3-56
3455 Pragmaswhich apply tovariables 3-59
3.4.6 Predefined Macros 3-61

iv SC100 C Compiler

41
4.2
421
422
4.3
431
432
4.3.3
4.4

5.1
511
512
513
5.2
521
522
523
5.3
531
532
5321
5322
5323
5324
5325
5.3.2.6
53.2.7
5328
5.3.3
5331
5332
5.3.3.3
5334
5335
5.3.3.6
5.3.3.7
53338
5.3.3.9
534
534.1
535

Chapter 4
Interfacing C and Assembly Code

Inlining aSingle Assembly Instruction 4-1
Inlining a Sequence of Assembly Instructions. 4-2
Guidelinesfor Inlining Assembly Code Sequences. 4-2
Defining an Inlined Sequence of Assembly Instructions. 4-3
Calling an Assembly FunctioninaSeparateFile. 4-7
Writingthe Assembly Code 4-7
Calingthe Assembly Function. i, 4-8
Integratingthe Cand Assembly Files. 4-8
Including Offset LabelsintheOQutput File............. 4-9
Chapter 5
Optimization Techniques and Hints

OPtMIZEr OVEIVIEW . . . ottt e e ettt et et et 5-2
BasiCBIOCKS. 5-2
Linear and ParallelizedCode 5-3
Optimization Levelsand Options. 5-4
Usingthe Optimizer e e 5-6
Invokingthe Optimizer.t e e 5-6
Optimizing for SPaCeo e e 5-7
Using Cross-FileOptimization. i 5-7
Optimization Typesand FUNCLIONS.t i 5-8
Dependenciesand Parallelization. 5-8
Target-Independent Optimizations., 5-9
Target-Independent Strength reduction (loop transformations) 5-10
Functioninlining. e 5-16
Common subexpresson elimination. 5-17
Loopinvariantcodeccviii i e 5-17
Constant folding and propagation., 5-18
Jump-to-jump elimination. 5-19

Dead code €limination 5-19

Dead storage/assignment elimination. 5-19
Target-Specific Optimizations e 5-20
Instructionscheduling. i 5-22
Target-specific softwarepipelining 5-23
Conditional execution and predication. 5-26
Speculative eXECULIONottt e 5-27
Post-increment detection.t 5-28
Target-specific peepholeoptimization 5-29
Extract peepholeoptimization, 5-30
Target-Specific StrengthReduction 5-32

Prefix grouping. e 5-33

Space OptimizatioNnS.o v e e 5-33
Code Sinking Optimizationouiiiii e 5-34
Cross-FileOptimizationst e e 5-35

SC100 C Compiler

535.1 Rulesfor using Cross-file Optimization. 5-35

54 Guiddinesfor UsingtheOptimizer 5-35
54.1 Partial Summation TeChNIqUES.o 5-37
54.2 Multisample Techniques. i e e e 5-40
54.2.1 Multisample implementationissues.coovvon... 5-42
54.2.2 Implementationexample. i 5-44
54.3 General HINESo 5-49
54.3.1 Software pipelining. 5-49
54.3.2 Passing and returning largestructs. i 5-49
54.3.3 Arithmeticoperations.t e 5-49
5434 Local variables 5-49
54.35 Resource limitations.t 5-50
55 Optimizer ASSUMPLIONS . ..ottt et e et e 5-50
Chapter 6
Runtime Environment
6.1 Startup Code.o e 6-1
6.1.1 BareBoard Startup Code 6-2
6.1.2 CEnvironment StartupCode 6-3
6.1.2.1 C environment initializationcode. o e 6-3
6.1.2.2 Initializationof variables 6-3
6.1.2.3 C environment finalizationcode. 6-3
6.1.2.4 Low level /O SerVIiCeS . ..o v i 6-3
6.1.3 Configuring Your Startup Codeo oot 6-4
6.2 Memory MOdelS e 6-5
6.2.1 Small and Tiny Memory Models i 6-5
6.2.2 BigMemory Model 6-5
6.2.3 Linker Command Files. i 6-6
6.3 Memory Layout and Configuration i, 6-7
6.3.1 Stack and Heap Configuration, 6-8
6.3.1.1 Runtimestack 6-9
6.3.1.2 Dynamic memory alocation(heap), 6-9
6.3.2 Static Data Allocation.o 6-10
6.3.3 ConfiguringtheMemory Map e 6-10
6.3.3.1 Memory map configurationexample, 6-10
6.3.4 Machine ConfigurationFile i, 6-11
6.34.1 Defining the memory configurationoou... 6-11
6.3.5 Application ConfigurationFile. i 6-13
6.3.5.1 FilestructureandsyntaxX.cc it 6-14
6.3.5.2 Schedulesection. ... 6-14
6.3.5.3 Binding section. e 6-16
6.3.5.4 Overlay SeCtion.t e e e 6-17
6.4 CaAling Conventions.t e 6-19
6.4.1 StaCK POINtEY . . . o 6-19
6.4.2 Stack-Based CallingConvention, 6-19
6.4.3 Optimized Calling Sequences. it e 6-21
6.4.4 Stack FramelLayout i e 6-22

Vi SC100 C Compiler

6.4.5 Interrupt Handlers. 6-23

6.4.6 Frame Pointer and Argument Pointer.covo... 6-23
6.4.7 Hardware LOOPS oo oo et e e 6-24
6.4.8 Operating Modes. 6-24
6.5 SAUraliON e 6-25
6.5.1 Saturation SWItCheS.o 6-25
6.5.2 SAUraliON SIS oo 6-25
Chapter 7
Runtime Libraries
7.1 ProvidingRuntimeLibraries e 7-2
711 Using Librarieswithdebug. o i 7-2
7.1.2 BuildingtheLibraries. e 7-2
7.2 Character Typing and Conversion (ctype.h).o .. 7-2
721 Testing FUNCLIONSo o e 7-3
7122 ConversioN FUNCLIONS.ot e e e 7-3
7.3 Floating Point Characteristics (float.h). 7-4
731 Floating Point Library Interface (fltmath.h) 7-5
7311 Round Mode i e 7-5
7.3.1.2 FLUSH TO ZERO ... o e e 7-6
7.3.1.3 IEEE EXCEPtiONSo e e 7-6
7314 EnableFPEXCEptions. o e 7-7
74 Integer Characteristics (limitsh). i 7-8
75 Locades(localeh) e 7-8
7.6 Floating Point Math (math.h) 7-9
7.6.1 Trigonometric FUNCLiONS. 7-9
7.6.2 HyperbolicFunctions e 7-9
7.6.3 Exponential and Logarithmic Functions. 7-10
764 POWeEr FUNCLIONSo e e 7-10
7.6.5 Other FUNCLIONS.o e 7-10
7.7 Nonlocal Jumps(setimp.h) 7-11
7.8 Signa Handling (signal.h) 7-11
7.9 Vaiable Arguments(stdarg.h) 7-11
7.10 Standard Definitions(stddef.h). 7-12
711 I/OLibrary (stdio.h) 7-12
7111 INPUL FUNCLIONS. . . . oo ettt et 7-12
7.11.2 Stream FUNCLIONS 7-13
7113 OULPUL FUNCLIONS.o e e e e e 7-14
7114 Miscellaneous /O FUNCLIONSo 7-14
7.12 Genera Utilities(stdlib.h) 7-15
7121 Memory Allocation Functions i 7-15
7.12.2 Integer ArithmeticFunctions i 7-15
7.12.3 String Conversion FUNCLIONS e 7-16
7124 Searchingand Sorting Functions i 7-16
7.12.5 Pseudo Random Number Generation Functions. 7-16
7.12.6 Environment FUNCLIONS.ot 7-17
7.12.7 Multibyte Character Functions. 7-17

SC100 C Compiler vii

7.13 String Functions (String.h) 7-17

7.13.1 CopyiNg FUNCLIONSo e 7-18
7.13.2 Concatenation FUNCLIONS. oot e 7-18
7.13.3 Comparison FUNCLIONS e e 7-18
7134 SearCh FUNCLIONS. e e e 7-19
7.135 Other FUNCLIONS. e e e e 7-19
714 TimeFunctions(timeh) e 7-20
7.14.1 Time Constant.o e 7-20
7.14.2 PrOCESS TIME. . . ottt e e e 7-20
7.15 Built-in Intrinsic Functions (prototype.h). oo oL 7-21

Appendix A
Migrating from Other Environments

Al CodeMigration OVEIVIEWttt e et e e A-1
A.2 Migrating Code Developed for DSP56600.ccoiviiiinnnnn.. A-2
A.3 Migrating Code Developed for TIBXX A-6

viii SC100 C Compiler

31
3-2
3-3
3-4
35
3-6
3-7
3-8
51
5-2
5-3
5-4
6-1
6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3
7-4
7-5
7-7
7-6
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16

List of Tables

File Typesand EXIENSIONS oot e e e 3-7
Shell OptioNsS SUMMANYt e e 311
Data Typesand SiZeSo v i e 3-36
Interpretation of 16-bit DataValues. oo.... 3-43
Interpretation of 40-bit DataValues., 3-43
INtriNSICFUNCLIONS e 3-47
Pragmas. . . . e e 3-53
Predefined Macrost 3-61
Optimization LevElS e e e 5-4
Optimization OptioNS SUMMaANY oot i et 5-5
Summary of Target-Independent Optimizations 5-9
Summary of Target-Specific Optimizations. 5-20
Status Register Default Settings. 6-2
Memory ModelS 6-5
Small Memory Model DefaultValues, 6-8
Big Memory Model Default Values. ... 6-8
Tiny Memory Model Default Values. 6-8
Register Usage in the Stack-based Calling Convention. 6-20
Supported ISO Libraries. 7-1
Supported Non-1SO Libraries. i 7-1
Testing FUNCLIONS o e e 7-3
Conversion FUNCLIONS. oot e e e 7-3
Contentsof Filefloat.h......... ... 7-4
Locale FUNCLIONS.o 7-8
Contentsof Filelimitsh....... 7-8
TrigonometriC FUNCLIONS. o e e 7-9
HyperbolicFunctions i e 7-9
Exponential and Logarithmic Functions. 7-10
POWEr FUNCLIONSo et e 7-10
Other FUNCLIONS.o e e 7-10
Nonlocal JUMPS.o 7-11
Signal Handling (signal.h) i 7-11
Variable Arguments(stdarg.h) 7-11
Standard Definitions (stddef.h). 7-12

SC100 C Compiler iX

7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
A-1

A-2

A-3

A-4

A-5

A-6

A-7

INPUL FUNCLIONS.o e e e 7-12

Stream FUNCLIONSo e et e e 7-13
OULPUL FUNCLIONS.o e e e e 7-14
Miscellaneous /O FUNCLIONSt e 7-14
Memory Allocation Functions i 7-15
Integer ArithmeticFunctions i 7-15
String Conversion FUNCLIONSot e 7-16
Searchingand Sorting Functions o, 7-16
Pseudo Random Number Generation Functions. 7-16
Environment FUNCLIONS. i e 7-17
Multibyte Character FUNCLIONS. i e 7-17
CopyiNg FUNCLIONSo e e e 7-18
Concatenation FUNCLIONS. oottt 7-18
ComparisoN FUNCLIONSo 7-18
SearCh FUNCHIONS. e et e e 7-19
Other FUNCLIONS.ot e e e e et e e e 7-19
TIMEFUNCHIONS. e e e 7-20
TImMe CoNStaNt. e 7-20
Built-inIntrinSiCFUNCtions. i e 7-21
DSP56600 Integer Data Type Differences. A-2
DSP56600 Fractional Data Type Differences A-2
DSP56600 Pointer Size Differences. ... A-3
DSP56600 Fractional Arithmetic Differences A-3
DSP56600 Intrinsic Function Differences oo oL A-4
DSP56600 Storage SpeCifiers.o e A-5
DSP56600 Miscellaneous Differences. i A-5

SC100 C Compiler

3-10
3-11
3-12
3-13

5-10
5-11
5-12
5-13
5-14
6-1

List of Figures

The SC100 C Compilation Processt 1-5
TheC Compilation ProCess v e 3-3
Traditional Optimization.t e 3-5
Cross-File Optimization i i e e e 3-6
File ExtensonsintheShell Cycle 3-8
Characters—Memory Layout. i i 3-37
Characters—Dn Register Layout 3-37
Characters—Rn Register Layoutc.iiiiiiiinnn.. 3-37
Integers—Memory Layoutt 3-38
Integers—Alignment e 3-38
Integers—Dn Register Layout i 3-39
Integers—RN Register Layout i 3-39
Fractional Integers—Dn Register Layout. 3-40
Extended Precision Fractional—Dn Register Layout. 3-45
Linear and Parallelized Code 5-3
SOUAIE L0 . . vt et e 5-14
Triangular LOOP . ..ot 5-15
Sequence of Target-Specific Transformation Optimizations. 5-21
Single Sampleand MultissmpleKernels o 5-40
Single ALU Operand and Memory Bandwidth 5-41
Quad ALU Operand and Memory Bandwidth 5-41
Optionsfor Increasing Operand Bandwidth. 5-42
Number of Samples and ALUs for Implementing DSP Algorithms 5-42
Quad Coefficient Loading fromMemory., 5-43
Misalignment when LoadingQuad Operands 5-43
Quad ALU, Quad Sample FIR Filter DataFlow 5-44
FIR Filter Equationsfor Four Samples. oo, 5-45
GenericKernel For Quad ALUFIR i 5-45
SC100 Default Memory Layout oo e 6-7
Stack FrameLayout e 6-22

SC100 C Compiler Xi

Xii SC100 C Compiler

2-1
3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31

List of Examples

Samplesourcefile:hello.c ... 2-1
Invokingtheshel 3-10
Definingashell commandfile.......... 3-15
Contents of ashell commandfile............ 3-15
Shell Helppage (extract) ... e e 3-15
Overiding fileextensions. e e 3-18
Specifyingoutputfiles 3-19
Passing multipleoptionstothesametool............................. 321
Definingthearchitecture 3-24
Definingapredicatename ... 3-26
Deetingapredicate ...t e 3-27
Declaringanasmfunction i 3-28
Returning thealignmentrequirement iiuon... 3-29
Outof rangewarningttt et e 3-29
External entitiesinotherscopes. i 3-30
PointerstoincompletearraySo it e 3-30
Prototyped parameter list i 3-32
Omittingthedeclarator list. i i 3-33
Bit-field alignmenttolongword (1).o 341
Bit-fieldaignmenttocharacter i 341
Bit-field alignmenttolongword (2).o 341
Bit-field offset. 3-41
Fractional arithmeticexamples. 3-42
Integer arithmeticexamples i i 3-42
Integer arithmetic computation. 3-44
Fractional arithmeticcomputation 3-44
INtrinSICTUNCLiONS. 3-51
Intrinsic functionsusing extended precisionoou... 3-51
Hpragmanoinline e 3-54
Apragmasave CIXt 354
Hpragmaexternal. 3-55
Hpragmainterrupto 3-56

SC100 C Compiler Xiii

3-32 #pragmaprofilewithconstantvalue. 3-56
3-33 #pragmaprofilewithfrequency ratio.o i, 3-57
3-34 Hpragmaloop COUNLo e e 3-58
3-35 Hpragmaalign e 3-60
4-1 Inlining asingleassembly instruction 4-2
4-2 INMNING SYNtaXo e 4-4
4-3 Simpleinlined assembly function. o 4-4
4-4 Inlined assembly function with labels and hardwareloops 4-5
4-5 Referencing global variablesin an inlined assembly function.............. 4-6
4-6 Assembly functioninaseparatefile............. 4-7
4-7 Ccodecalingassembly function. i 4-8
4-8 Integrating Cand assembly files. i i 4-8
4-9 Data structure shared between Candassembly 4-9
4-10 Specifying the output of offset information............................ 4-9
4-11 Data structure offsets in the assembly outputfile. 4-9
4-12 Using symbolic offsetsinassembly code. 4-10
5-1 Invoking the optimizer with default settings 5-6
5-2 Invoking the optimizer for target-independent optimizationsonly 5-6
5-3 Invoking the optimizer with cross-file optimization. 5-6
5-4 Simpleinstructiondependency i 5-8
5-5 Algorithm instructiondependencyc i 5-8
5-6 Loop transformation-smpleloop.c o 5-10
5-7 Loop transformation- dynamicloop ..., 5-11
5-8 Loop transformation - multi-steploop 5-12
5-9 Loop transformation - composed variables 5-13
5-10 Loop transformation- squareloopo 5-14
5-11 Loop transformation - triangularloop 5-15
5-12 Functioninlining. 5-17
5-13 Common subexpressonelimination., 5-17
5-14 Loopinvariantcodemotion 5-17
5-15 Constant foldingand propagation.t 5-18
5-16 Jump-to-jump elimination. i 5-19
5-17 Dead codeelimination 5-19
5-18 Dead storage/assignment elimination.oo ... 5-19
5-19 Instructionscheduling. i 5-22
5-20 Fillingdelay Slots 5-22
5-21 Avoiding pipelinerestrictions. o i 5-23
Xiv SC100 C Compiler

5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
7-1
7-2
7-3

Software pipelining-complex FIR, 5-24

Software pipelining - vector multiplicationby aconstant 5-25
Conditional executionand predication., 5-26
Speculative eXeCULION ot e 5-27
Post-increment detection. 5-28
Target-specific peepholeoptimization, 5-29
Combined pipelining and peephole optimizations. 5-29
When the AND constant does not fit in lower or upper 16 bits. 5-30
ASR followed by an AND (noASLL necessary).covvvinnn... 5-31
Using an EXTRACT instead of an EXTRACTU.ot 5-31
Invoking the optimizer for spaceoptimization. 5-33
Codesinkingoptimizationt 5-34
Simpleand complex array aCCesseSo i it 5-35
MAC usage limited by dependency inloop 5-37
Partial summationfor dual MACUSage.t 5-38
Alignment restrictionsinalgorithms 5-39
Singleinstruction quad ALU genericfilterkernel 5-46
FIR_A434 quad ALU, quad sample C simulationcode. 5-46
Avoiding software pipelininginsourcecode. 5-49
Creatinganew startupfile i 6-4
Assembling the modified startupfile, 6-4
Using the modified startupfile. o i 6-4
Big, small, andtinymemory models oL, 6-6
Small and tiny memory modeinstruction. 6-6
Allocating large arraysfromtheheap. L 6-10
Modified memory map configuration. 6-10
Modified memory configuration in the linker command file.............. 6-11
Definingadatamemory space.oovv it 6-12
Defining aprogram memory SPaCe. oo it 6-13
Definingmultiplememory spaces 6-13
Defining additional entry pointsfor an application 6-16
Placing avariable at an absolutelocation. 6-17
Defining global variableoverlays. 6-18
Function call and allocation of parameters. 6-20
Changingtheroundmode. i i 7-5
Disabling flushingtozero. i e 7-6
Using theexception statusword. i 7-6

SC100 C Compiler XV

7-4 Setting asignal for exceptions 7-7
7-5 Timinganapplication. e e e 7-20
A-1 Migrating code from other environments., A-2

Xvi SC100 C Compiler

About This Book

This manual describesthe C compiler for the StarCore SC100 generation of digital signal processor (DSP)
cores (SC110 and SC140), and provides detailed guidelines for its use.

Audience

This manual isintended for systems software devel opers, applications devel opers, system hardware
developers, and microprocessor designers.

Organization

Thismanual is organized into seven chapters and one appendix, as follows:

Chapter 1, “Introduction,” provides an overview of the SC100 C compiler and outlinesthe SC100 C
compilation process.

Chapter 2, “ Getting Started,” provides the essential information and instructions that enable you to
start using the SC100 C compiler.

Chapter 3, “Using the SC100 C Compiler,” explains how to use the compiler, and describes the
options and features that it supports.

Chapter 4, “Interfacing C and Assembly Code,” describes the support provided by the compiler for
interfacing between C source code and assembly code, and provides instructions for using this
interface.

Chapter 5, “ Optimization Techniques and Hints,” explains how the SC100 optimizer operates, and
describes the optimization levels and individual optimizations that can be applied.

Chapter 6, “Runtime Environment,” describes the startup code used by the compiler, the layout and
configuration of memory, and the calling conventions that the compiler supports.

Chapter 7, “Runtime Libraries,” describesthe C libraries and 1/0O libraries supported by the SC100
C compiler.

Appendix A, “Migrating from Other Environments,” provides guidelines for migrating C code from
other environments to the SC100 C compiler.

Preface

Xvii

Suggested Reading
C, A Reference Manual, Samuel P. Harbison and Guy L. Steele Jr, Tartan Inc. (Prentice Hall: 1995).

Compilers Principles, Technigques, and Tools, Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman
(Addison-Wesley Publishing Company: 1986).

References
e SC100 Application Binary Interface Reference Manual (MNSC100ABI/D)
e SC100 Assembly Language Tools User’s Manual (MNSC100ALT/D)
e SC110 DSP Core Reference Manual (MNSC110CORE/D)
e SC140 DSP Core Reference Manual (MNSC140CORE/D)
e SC100 Smulator Reference Manual (MNSC110SIM/D)

Conventions
This manual uses the following notational conventions:

e Courier monospaced type indicate commands, command parameters, code examples, expressions,
datatypes, and directives.

» Itaic type indicates replaceable command parameters.
e All source code examples arein C.

Acronyms and Abbreviations

The following list defines the acronyms and abbreviations used in this manual.

AGU Address Generation Unit

ALU Arithmetic Logic Unit

CFE C Front End

DSP Digital Signal Processor

FIR Finite Impulse Response

IR files Immediate Representation files
LLT Low Level Transformations

Revision History
Rev 1.8 of the SC100 C Compiler User’s Manual has been updated with SC110 information.

Xviii Preface

Chapter 1
Introduction

The StarCore Technology Center has focuses on ensuring awide selection of best-in-class devel opment
tools for StarCore-based System on Chip (SoC) products. The result is an unusually high level of support
for a new architecture that includes multiple compilers, development environments, and real-time
operating system software products.

Specifically, StarCore is devel oping baseline tools such as a C compiler, assembler, linker, and simulator.
These common SC100 baseline tools will be featured in visually integrated development environments
(IDEs) that Lucent Technologies and Motorola provide in support of their respective SC100 chip products.
The IDEs include real-time source-level debugging and profiling tools.

1.1 Overview of the SC100 C Compiler

A key feature of the SC100 C compiler isits ability to generate code that is exceptionally compact,
approaching the code density of the best RISC microprocessors while demonstrating high performance that
is comparable to assembly code running on other DSPs. To achieve such a high performance, the compiler
optimizes code for maximum parallelism in order to take full advantage of the core’s multiple execution
units.

In addition to its extensive optimization capabilities, the compiler offers ahost of other features that make
it ideal for DSP software development, including:

¢ Conformance to the ANSI C standard

e Intrinsic function support for ITU/ETSI primitives: saturating, non-saturating, and double-precision
arithmetic

¢ Runtimelibraries and environments
e Easy integration of assembly code into C code

SC100 C Compiler 1-1

Introduction

1.2 The Cross-File Optimization Approach

The SC100 optimizer converts preprocessed source files into assembly output code, applying arange of
code transformations that can significantly improve the efficiency of the executable program. The goa of
the optimizer isto improve its performance in terms of execution time and/or code size by producing
output code that is functionally equivalent to the original source code.

The method that traditional compilers useisto optimize each source fileindividually before compiling the
optimized code and submitting all the compiled files to the linker. Because all the necessary information is
not available when files are optimized individually, the compiler must make various assumptions, and is
unable to produce the most efficient result.

To ensure optimal performance, the optimizer can take advantage of visibility of as much of the
application as possible. The SC100 global binder links all modulesinto a single module on which all
optimizations are performed. As aresult of this approach, the performance of the optimizer is substantially
improved, and the generated code is typically more efficient than if produced without cross-file
optimization.

Chapter 5, “Optimization Techniques and Hints,” describes the optimization modes and functionsin detail.

1-2 SC100 C Compiler

Compiling Applications

1.3 Compiling Applications

The SC100 compilation process consists of a series of steps, starting from the submission of source files
and optionsto the C Front End (CFE), through the creation of Intermediate Representation (IR) files, the
optimization of thesefiles, and the output of optimized assembly code for linking into the final executable
program.

Y ou can perform all these processes in one single step, using the compiler shell program.

1.3.1 The Compiler Shell Program

The Compiler’s shell provides a one-step command-line interface, in which you specify the filesto be
processed for each compilation. At each stage, a different tool accepts the input files according to their file
extensions, processes them, and outputs the transformed code for processing by the next development tool.

By default, the compiler automatically progresses the input files through al the processing phases. The
shell command line lets you select the exact development tools and processing stages that you require, and
enables you to define any specific processing options, settings and default overrides that you need.

The options that you specify in the command line control the operation of the shell and of thetoolsused in
the application development process. These options either affect the behavior of the shell itself or the
compiler dispatches the options to the different programs, which the shell invokes.

The shell accepts awide range of option types, including those which perform specific actions, such as:
e generating alist of included files,
« dictating how to treat a source file, and

« controlling specific aspects of the C language features.

When you invoke the shell, the application development process automatically implements through all its
various stages to the final production of the executable program.

Chapter 3, “Using the SC100 C Compiler,” provides afull description of the shell program and options.

SC100 C Compiler 1-3

Introduction

1.3.2 Stages in the C Compilation Process

Following isan outline of the stepsinvolved in compiling C sourcefilesinto an executable program. These
stages areillustrated in the flow diagram shown in Figure 1-1 on page 1-5:

1. Theshell isinvoked with thelist of the C source files and assembly filesto be processed, and
the various options to be applied.

2. TheC Front End (CFE) identifies each C source file by its file extension, preprocesses the
source files, converts the files into Intermediate Representation (IR) files, and passes these
to the optimizer.

3. Thehigh-level phase of the optimizer trand ates each intermediate representation fileinto an
assembly ASCI|I file, and performs a number of target-independent optimizations. The
optimizer extractslibrary files that were created in IR form, and included at this stage of
processing. The optimization process a so includes any relevant information contained in
the application and machine configuration files.

4. Thelow-level phase of the optimizer carries out target-specific optimizations, and
transforms the linear assembly code output by the previous phase into parallel assembly
code.

5. Atthe end of the optimization, the compiler outputs the optimized assembly files to the
assembler, joined together with any specified external assembly files.

6. Thecompiler outputs the assembly files to the linker. The linker combines the assembly
object files, extracts any required object modules from the library, and produces the
executabl e application.

1-4 SC100 C Compiler

Compiling Applications

C
Source files

. SHELL

: C Front End
@ (CFE)

: [

- Intermediate

Library Representation

! IR files (IR) files

® ©

Target-Independent
_ _ Optimizations _ _

Target-Specific
Optimizations

Application/
machine
config. files

Optimized
Assembly
Code

External

Assembly
files

! Library
' |Object Modules

ASSEMBLER

LINKER

Executable
Program

Figure 1-1. The SC100 C Compilation Process

SC100 C Compiler

1-5

Introduction

1-6 SC100 C Compiler

Chapter 2
Getting Started

This example walks you through building and running a simple program using the SC100 C compiler.

2.1 A Quick Start

Creating and executing a program includes the following three phases:

1. Writing the C source code, using the utility of your choice. In this example we will use a
sample C source code file provided with your installation.

2. Compiling and linking the file, using the compiler shell.
Running the executable application you created.

2.1.1 Creating and Executing a Program

To create and execute a program:

1. Locatethefilehel | 0. ¢ inthe $SCTOOLS_HOVE/ sr ¢/ appnot es directory, where
$SCTOOLS HOME isyour installation directory. Copy the hel | o. c fileinto your working
directory.

Example 2-1 shows the C source code contained inthe hel | 0. ¢ file;

Example 2-1. Sample source file: hello.c

#i ncl ude <stdi o. h>

voi d main()

printf("Hello there!\n");

2. Typethefollowing command, which instructs the shell program to compile and link the
program:

scc -0 hello.eld hello.c
3. Run the executable program, by typing:

scl100-sim-quiet -exec hello.eld
RESULT: The message Hel | o t her e! isdisplayed.

Congratulations! Y ou successfully compiled, linked, and executed a program using the SC100 C compiler.

SC100 C Compiler 2-1

Getting Started

Chapter 3, “Using the SC100 C Compiler,” describes the shell program and the various file typesin detail ,
and explains how to use the many options and language features that the compiler supports.

2-2 SC100 C Compiler

Chapter 3
Using the SC100 C Compiler

This chapter contains sections that explain how to use the SC100 C compiler, and describes the options and
features that the compiler supports. The sections are:

Section 3.1, “The Shell Program,” provides an overview of the compiler shell program, outlinesthe
application devel opment process and optimization modes, and lists the file types and environment
variables that the shell recognizes.

Section 3.2, “Invoking the Shell,” explains how to initiate execution of the shell.

Section 3.3, “ Shell Control Options,” describesthe options for controlling the operation of the shell
and the development tools.

Section 3.4, “Language Features,” describes the supported extensions and modes, data types,
intrinsic functions, pragmas, and predefined macros.

3.1 The Shell Program

The shell program controls the processing of C source files and other filesinto an executable application,
through the preprocessing, compilation, optimization, assembly and linking stages.

The shell provides a one-step command line interface, where you specify the files that you want processed
for each compilation. At each stage adifferent tool acceptsthe input files according to their file extensions,
processes them, and outputs the transformed code for processing by the next development tool.

By default, the input files automatically progress through all the processing phases. The command line
enables you to select the exact development tools and processing stages that you require. Y ou can also
define any specific processing options, settings and default overrides that you need.

Section 3.3, “ Shell Control Options,” describes in detail the options that you can include in the command
line to change the behavior of the shell and the specific processing tools at the relevant stages of the
development process.

SC100 C Compiler 3-1

Using the SC100 C Compiler

3.1.1 The C Compilation Process

Thefollowing isan outline of the stepsinvolved in compiling C sourcefilesinto an executable program, as
illustrated in the flow diagram shown in Figure 3-1 on page 3-3.

1. Theshell isinvoked with thelist of the C source files and assembly filesto be processed, and
the various options to be applied.

2. TheC Front End (CFE) identifies each C source file by its file extension, preprocesses the
source files, converts the files into Intermediate Representation (IR) files, and passes these
to the optimizer.

3. Thehigh-level phase of the optimizer trand ates each intermediate representation fileinto an
assembly ASCI|I file, and performs a number of target-independent optimizations. The
optimization process also includes any relevant information contained in the application and
machine configuration files.

4. Thelow-level phase carries out target-specific optimizations, and transforms the linear
assembly code output by the previous phase into parallel assembly code.

5. Atthe end of the optimization, the optimized assembly files are output to the assembler,
assembl ed together with any specified external assembly files, and from there output to the
linker. The linker combines the assembly object files, together with any specified external
assembly files, extracts any required object modules from the library, and produces the
executabl e application.

3-2 SC100 C Compiler

The Shell Program

C
Source files

. SHELL

. Library
IR files

® ©

| Library
. |Object Modules

C Front End
(CFE)

Intermediate '

Representation
(IR) files

Application/
machine
config. files

Target-Independent
______ Optimizations

Target-Specific
Optimizations

Optimized
Assembly
Code

External

Assembly
files

ASSEMBLER
LINKER

Executable
Program

Figure 3-1. The C Compilation Process

SC100 C Compiler

3-3

Using the SC100 C Compiler

3.1.2 Cross-File Optimization

The SC100 optimizer converts preprocessed source files into assembly output code, applying a range of
code transformations that can significantly improve the efficiency of the executable program. The goal of
the optimizer isto improveits performance in terms of execution time and/or code size by producing
output code that is functionally equivalent to the original source code.

The method that traditional compilersuseisto optimize each source file individually, before compiling the
optimized code, and then submit all the compiled files to the linker. Because not all the necessary
information is available when files are optimized individually, the compiler must make various
assumptions, and is unable to produce the most efficient result.

To ensure optimal performance, the optimizer takes advantage of visibility of as much of the application as
possible. The SC100 global binder links all modules into a single module on which all optimizations can
be performed. As aresult of this cross-file approach, the performance of the optimizer substantially
improves, and the generated code is typically more efficient than if produced without cross-file
optimization.

Section 5.3.5, “ Cross-File Optimizations,” on page 5-35, provides detailed information and rules for
utilizing cross-file optimization.

Figure 3-2 on page 3-5, and Figure 3-3 on page 3-6, illustrate the different processing routes for traditional
and cross-file optimization, respectively.

Traditional optimization provides faster compilation, but produces less optimized code. This can be useful
during the early stages of development, when you may need to compile different parts of the application

separately.

Cross-file optimization produces more efficient code, but the optimization process itself is slower than
traditional optimization.

By default, the shell compiles source files without cross-file optimization, for development purposes. Y ou
can choose to specify cross-file optimization when you invoke the shell.

Chapter 5, “Optimization Techniques and Hints,” describes the optimization modes and functionsin detail.

3-4 SC100 C Compiler

The Shell Program

C C C C C
Source file Source file Source file Source file Source file
|
CFE CFE CFE CFE CFE
IR file IR file IR file IR file IR file
|
OPTIMIZER OPTIMIZER OPTIMIZER OPTIMIZER OPTIMIZER
Optimized Optimized Optimized Optimized Optimized
Code Code Code Code Code
ASSEMBLER ASSEMBLER ASSEMBLER ASSEMBLER ASSEMBLER
LINKER -

Figure 3-2. Traditional Optimization

SC100 C Compiler 3-5

Using the SC100 C Compiler

C C C C C
Source file Source file Source file Source file Source file
CFE CFE CFE CFE CFE
IR file IR file IR file IR file IR file

>)4—
y
Optimized Optimized Optimized Optimized Optimized
Code Code Code Code Code
ASSEMBLER ASSEMBLER ASSEMBLER ASSEMBLER ASSEMBLER
LINKER -

Figure 3-3. Cross-File Optimization

3-6

SC100 C Compiler

The Shell Program

3.1.3 File Types and Extensions

The shell program assumesthat all items included in the command line that are not recognizable as options
or option arguments are input file names. The extension for each fileidentifiesthefiletype, and determines
a which stage the shell will start processing the file. If none of the tools recognize the file extension, the
shell treats the file as an input file to the linker.

The following table lists the file extensions and their corresponding file types, and shows which tool
processes each file type.

Table 3-1. File Types and Extensions

Extension File Tool

.C C source file C Preprocessor
.h C header file

i Preprocessed C source Front End

.obj IR language file Optimizer

lib IR library Optimizer
.asm, .sl Assembly file Assembler

.eln Relocatable ELF object file Linker

.elb ELF library file Linker

.cmd Linker command file Linker

Note: It ispossibleto cause the shell to process afile asif it were adifferent file type, as described in
Section 3.3.3, “Overriding Input File Extensions.”

The end result of the compilation processis an executable object file, with afile extension of . el d.
Figure 3-4 on page 3-8 illustrates the assignment of file extensions at each stage of the shell processing

cycle.

SC100 C Compiler 3-7

Using the SC100 C Compiler

C -
Source files
.c, .h

C
Preprocessor

r C Front End d
Library (CFE) Application/
IR files machine
) config. files
. obj
lib
OPTIMIZER
. sl
r C
Library External
Object Modules ASSEMBLER As?i?ergbly
.eln

.elb

LINKER

.eld

Executable
Program

Figure 3-4. File Extensions in the Shell Cycle

3-8 SC100 C Compiler

Invoking the Shell

3.1.4 Environment Variables

Each time the shell executes, it refersto certain environment variables that determine specific aspects of its
behavior. These environment variables are defined during installation, and include the following:

$SCTOOLS HOVE Defines the root directory where the executables, libraries, and tools are
stored. Thisis set to the default location at installation. The compiler searches
thisdirectory for all the configuration and executable files that it requires.

3.2 Invoking the Shell

Invoke the shell using a single command line, entered at a UNI X® or MS-DOS® prompt. This command
line consists of the shell invocation command, one or more file names, and optionally, one or more shell
options.

3.2.1 Command Line Syntax

The syntax of the shell command lineis asfollows:
scc [option...] file...
The three components of the command line are:

scc Formerly ccsc100. Invokes the compiler shell.

option One or more options that control the way in which the shell and the various devel opment
tools operate. Section 3.3, “ Shell Control Options,” describes the available options and
their effect on the shell and the specified files. It is not mandatory to specify optionsin the
command line.

file The names (including extensions) of one or more files that you want the shell to process.
These can be source, object, library, and/or command files.

3.2.1.1 Command Line Syntax Rules

The following syntax rules apply:
e The command line must consist of only oneline.

e Youcanincludeindividual optionsand filesin the command linein any order, but you must separate
them from each other using at least one space.

« Do not combine options. Specify the options individually.

e Options which specify an argument, such as afile name or directory name, must be followed
immediately by their argument(s), separated by at least one space.

< All file names, options, and arguments are case sensitive. File names may be any combination of
a phanumeric characters.

e You can not start afile name with anumeric character. Numbers can appear within the filename, but
not at the beginning of the file name.

e Theunderscore () isthe only specia character that the compiler accepts.

SC100 C Compiler 3-9

Using the SC100 C Compiler

The shell command line shown in Example 3-1 specifies three C source files and the option - ¢, which
instructs the shell to compile and assembl e these files.

Example 3-1. Invoking the shell

scc -c one.c two.c three.c

3.2.1.2 Command Files

Y ou can include one or more shell command files on the command line. Command files are files that you
can create containing any number of options and arguments, which the shell uses asif the files are part of
the command line. Section 3.3.1.2, “ Specifying a shell command file,” describes the use of shell command
filesin greater detail.

3.3 Shell Control Options

The options specified in the command line and command files control the operation of the shell, and
control the operation of the tools used in the application development process.

The following categories of options are provided:

e Optionsthat control the behavior of the shell

e Preprocessing options

e Optionsthat override the file extension for input files

e Output filename and location options

e Clanguage options

e Optimization pragma and code options

e Optionsthat control the output of listing files and messages
e Pass-through options

» Hardware model and configuration options

Table 3-2 on page 3-11 provides a summary of the available options. This table is followed by detailed
descriptions of each of the options, with the exception of the options relating to optimization, which are
described in detail in Chapter 5, “ Optimization Techniques and Hints.”

3-10 SC100 C Compiler

Shell Control Options

Table 3-2. Shell Options Summary

Options that control the behavior of the shell

Option Effect Section Page
-E[file] Stops after preprocessing source files. Removes comments. 3311 3-14
-cfe Stops after Front End. Does not invoke the optimizer. Enables the 3311 3-14
creation of libraries of object files for use with cross-file optimization.
-S Stops after compilation. Does not invoke the assembler. 3311 3-14
-C Compiles and assembles only. Does not invoke the linker. 3311 3-14
-F file Reads options from the specified file, and appends to command line. 3312 3-15
- h or none Displays the shell Help page, listing all available options. 3313 3-15

Preprocessing Options

Option Effect Section Page
-C Preserves comments in the preprocessing output. 3.3.2.1 3-16
-Mfile Generates a MAKE file showing dependencies. 3321 3-16
-MH file Generates a list of #i ncl ude files. 3321 3-16
-D mac [=def] Defines preprocessor macro. 3.3.22 317
-U nmacro Undefines preprocessor macro. 3.322 317
-1 dir Adds directories to the #i ncl ude file search path. 3323 317
Syntax note:The options - D, - U, and - | do not require a space

before the argument.

Options that override the file extension for input files

Option Effect Section Page
-xc file Treats specified file(s) as C source file(s) (. ¢) . 333 3-18
[file2 ...]
-xobj file Treats specified file(s) as IR language file(s) (. obj) . 333 3-18
[file2 ...]
-xasmfile Treats specified file(s) as assembler source file(s) (. asmor. sl). 333 3-18
[file2 ...]

Output filename and location options

Option Effect Section Page
-o file Assigns a filename (and extension) to the output file. 334 3-19
-r dir Redirects all output to the specified directory. 334 3-19

SC100 C Compiler 3-11

Using the SC100 C Compiler

Table 3-2. Shell Options Summary (Continued)

C Language Options

Option Effect Section Page
-ansi Strict ANSI mode. Assumes all C source files contain ANSI/ISO 3351 3-20
versions of the language, with no extensions. The default mode is the
ANSI/ISO version with extensions.
- kr K&R/pcc mode. Assumes all C source files contain K&R/pcc versions 3351 3-20
of the language. The default mode is the ANSI/ISO version with
extensions.
-g Adds debug information to generated files. 3352 3-20
-Sc (Default) Makes char type variables signed. 3353 3-20
-usc Makes char type variables unsigned. The default setting is signed. 3353 3-20
-fractional Tells the compiler what to do about saturation. Indicates that your 3354 3-21
code contains intrinsics.
Optimization Pragma and Code Options
Option Effect Section Page
-Q0 Disables all optimizations. Outputs unoptimized assembly code.
-O1 Performs all target-independent optimizations, and outputs optimized 5.3.2 5-9
linear assembly code.
Omits all target-specific optimizations.
-2 (Default) Performs all optimizations, producing the highest performance code 5.3.3 5-20
possible without cross-file optimization. Outputs optimized non-linear
assembly code.
-Gs Performs space optimization for the indicated level of optimization. 534 5-33
Outputs optimized assembly code which is small.
This option can be specified together with any of the optimization
options except -O0.
-Qg Performs cross-file optimization, which applies the indicated level of 535 5-35
optimization across all input files at once. The default is non-cross file
optimization.
This option can be specified together with any of the optimization
options except -O0.
-no_overfl ow Tells the compiler that the application does not rely on the ANSI/ISO
C defined overflow behavior of operations on unsigned integral
data-types.
Pass-through Options
Option Effect Section Page
- Xasm opti on Passes option to the assembler. 336 3-21
- Xl nk option Passes option to the linker. 336 321
Options that control the output of listing files and messages
Option Effect Section Page
-de Retains a generated error file for each source file. 3371 322
3-12 SC100 C Compiler

Shell Control Options

Table 3-2. Shell Options Summary (Continued)

-dm [file] Generates a link map file. 3.3.71 322

-do Adds to the assembly output file the offsets for C data structure field 3371 3-22
definitions.

-dL Generates a C list file for each source file. 3371 322

-dL1 Generates a C list file for each source file, including a list of 3.37.1 322
#i ncl ude files.

-dL2 Generates a C list file for each source file, including expansions. 3371 322

-dL3 Generates a C list file for each source file, including both #i ncl ude 3371 3-22
files and expansions.
-dx [file] Generates a cross-reference information file. 3371 3-22
-dc [0-4] Generates a file showing calls in graphical tree form, in postscript. 3371 322
The number 0 to 4 specifies the paper size, AO through A4.
- or-w (Default) Quiet mode. Displays errors only. 3.3.7.2 3-23
-V Verbose mode. Displays full information. 3372 323
-n Displays command lines without executing. 3372 323
-W Suppresses warnings on local automatic variables that are used 3.37.3 323
before their values are set.

- Suppresses cross-file optimization warnings. 3373 323

-\l | Reports all warnings and remarks. 3.3.7.4 3-23

Hardware Model and Configuration Options

Option Effect Section Page

-arch target Specifies the target architecture. SC140 is the default architecture. 3381 3-24

-nmc file Specifies the file to be used as the machine configuration file, if 3382 3-24
different from the default file defined at installation.

-ma file Specifies the file to be used as the application configuration file, if 3.3.82 324
different from the default file defined at installation.

-crt file Specifies the file to be used as the startup file, if different from the 3382 3-24
default file defined at installation.

-mb Compiles in big-memory mode. Small-memory mode is the default. 339 3-25

-m Compiles in tiny-memory mode.Small-memory mode is the default. 3392 325

-nrom Copies all initialized variables from ROM at startup. 3.3.93 3-25

- be Generates output for a big-endian target configuration. The defaultis 3394 3-25
a little-endian configuration.

-memfile Specifies the linker command file to be used, if different from the 3382 3-24
default file defined at installation.

SC100 C Compiler 3-13

Using the SC100 C Compiler

3.3.1 Controlling the Behavior of the Shell

The options described in this section enable you to control the overall actions of the shell. Y ou can tell the
shell program at what stage to stop processing, define files containing command line options, and display
the invocation commands.

3.3.1.1 Controlling where the shell stops processing

By default, the shell completes the entire processing cycle, from the input of source files through all of the
intermediate stages to the output of the final executable. If you want to stop the processing at a specific
stage, you can use one of the options- E, - cf e, - S, or - c. In thisway, you can process and check
individual files or groups of files through different stages, until the files are finally ready to be compiled
and linked together.

Following isthe process for controlling where the shell stops processing.

1. Select one of the following options:

Option Description

IThe shell stops after preprocessing the C source files. Include an . i extension if you
want the file input to the compiler at a later time. If you do not specify a file, the
compiler sends the output to the standard output stream, st dout .

Comments are not preserved in the preprocessing output, unless you specify the
option - C. See Section 3.3.2.1, “Changing preprocessed output,” for details of - Cand
other options that add specific features to the preprocessing output.

LE [file]

IThe shell stops after it processes the input source files through the Front End. You can
use this option to check that the files are valid source files that meet the essential
requirements for processing by the shell, for example, they contain no syntax errors.
-cfe [Thisis primarily useful when preparing files for cross-file optimization. Output files are
IR files, assigned the extension .0bj .

The - cf e option enables you to create libraries of object files to use later when
compiling in cross-file optimization mode.

[The shell stops after it compiles the source files to assembly files, and does not invoke
the assembler. Output files are assigned the extension .sl .

The shell stops after compiling C and assembly source files to object code, and does

-C not invoke the linker. The object code output files are assigned the extension .el n.

2. Following processing withthe- E, - cf e, - S, or - ¢ options, the output files are written to
the current directory. If you use the - r option the output files are written to the specified

directory.

3. The compiler assigns the output files the same names as the input files, with the extension
for the selected option.

4. The compiler overwrites any existing filesin the directory with the same name and
extension.

The starting point for the processing of each input file is determined by itsfile extension. Refer to
Table 3-1 on page 3-7 for an explanation of file extensions. See Section 3.3.3, “Overriding Input File
Extensions,” for a description of the options you can use to override these extensions.

3-14 SC100 C Compiler

Shell Control Options

3.3.1.2 Specifying a shell command file

Y ou can create command files containing options and arguments, which the shell program will treat as if
they were included on the command line.

Defining options and arguments within command files can save you input time when you invoke the shell
program. This also helps you overcome any imposed limitation on the length of the command line. Each
time you invoke the shell, you can select the command file with the set of options that suit your specific
requirements.

To specify ashell command file, specify the option - F followed by afilename. A command file can itself
contain the option - F specifying another shell command file.

Example 3-2 illustrates the use of the - F option to specify the command file pr oj . opt .

Example 3-2. Defining a shell command file

scc -F proj.opt

Within the command file, each separate option (with or without an argument), file, or list of files must
reside on anew line. Y ou can specify as many lines as you wish, in any order. Y ou can include comments
in the file using the # character. The shell ignores all characters between # and the end of the line.

The command file shown in Example 3-3 containsfour linesthat instruct the shell to invoke the linker with
three application object files and one library file, generate alink map file, and output the executable
program to afile named appl . el d.

Example 3-3. Contents of a shell command file

-0 appl.eld # output file nane
-dm appl . map # generate map file
filel.eln file2.eln file3.eln # object files

-l nylib.elb # shared library

Note: If you do not specify amap file, the shell generates a file with the same file name as the
specified . el d file, and the extension . map.

3.3.1.3 Displaying the shell Help page

The shell Help page lists al of the available shell options and arguments. Select the option - h to display
thislist.

Example 3-4 shows a section of the shell Help page:

Example 3-4. Shell Help page (extract)

-C Conpi | e and assenbl e only. Don't invoke the |inker

-cfe Stop after Front-End. (Used for cross-file optimzation)
-S Cenerate assenbly output file. Don't invoke assenbl er
-E Preprocess only

-C Preprocess only and keep conments

SC100 C Compiler 3-15

Using the SC100 C Compiler

3.3.2 Specifying Preprocessing Options

The options described in this section enable you to control the preprocessing stage of the shell program,
before the input files proceed through the Front End.

Using these preprocessing options, you can:
» change the output that the preprocessor produces,

» define one or more preprocessor macros, and
» define the directories you want searched for #i ncl ude files.

3.3.2.1 Changing preprocessed output

Y ou can specify any of the following options to change the format and content of the preprocessed output.
Y ou can specify these options in addition to the - E option, or instead of the - E option.

-C Keeps all comments (preprocessor directives) in the preprocessing output. If you
specify the - E option only, the preprocessed text iswritten to the output file with
line control information only, and with all comments removed.

-M[file] Instead of the normal preprocessing output, the compiler generates an output filein
MAKE format, containing alist that shows the dependencies between the input source
files.

If you do not specify afile, the compiler sends the output to the standard output
stream, st dout .

-MH [file] Instead of the normal preprocessing output, the compiler generates an output file
containing alist of all the#i ncl ude filesused in the source. Thislist includes all
levels of #i ncl ude files, together with any nested files.

If you do not specify afile, the compiler sends the output to the standard output
stream, st dout .

3-16 SC100 C Compiler

Shell Control Options

3.3.2.2 Defining and undefining preprocessor macros

Y ou can define one or more preprocessor macros, and you can remove the definition of a macro.
Section 3.4.6, “ Predefined Macros,” provides details of al the predefined macros supplied with the SC100
C compiler.

Y ou can specify the following macro options more than once in the command line, to define and undefine
different preprocessor macros:

-D macro [=val ue] Defines the named macro as a preprocessor macro, with the specified value.
If val ue isomitted, the value 1 (one) is assumed. Once a preprocessor
macro is defined with this option, it is passed by the shell to the
preprocessor for all subsequent compilations until it is undefined with the
- U option.

The space between the - D option and the named macro is optional.
-U macro Undefines the named macro by removing its previous definition. The macro
will not be passed to the preprocessor unlessit is redefined with the

- D option. Any - U optionsin the command line are processed only after
al - D options have been processed.

It is not necessary to enter a space between the - U option and the named
macro.

3.3.2.3 Adding directories to the #include file path

Theoption- 1 dir addsthe specified directory or directories to the path that the shell usesto search for
#i ncl ude files. The string di r can be alist of directories.

To specify directory or directoriesfor the #i ncl ude file search path:

Specify the option - 1 .

Follow the- | option with adirectory name or alist of directories.

The space betweenthe -1 option and thedi r string is optional.

On UNIX hosts, separate the individual directoriesin thelist with colons (;).
5. On PC hosts, separate the individual directories with semicolons (;).

Y ou can use this option more than once in acommand line, and the directories or listswill be searched in
the order in which the options are supplied.

A wDdPE

SC100 C Compiler 3-17

Using the SC100 C Compiler

3.3.3 Overriding Input File Extensions

Y ou can change how the shell program treats a specific input file, by overriding the assumptions made by
the shell based on the file's extension.

Y ou can select any of the following options, as many times as required. After the selected option you can
specify one or more filenames, separated by spaces.

-xc file [file2 ...]

-xobj file [file2 ...]

-xasmfile [file2 ...]

This option identifies the specified files as C language sourcefiles, as if
they had the extension . ¢. The shell processes these files in exactly the
same way as any other C source files specified in the command line, subject
to any other processing options selected.

Thisoptionidentifiesthefilesas IR languagefiles, asif they were output by
the Front End with the extension . obj . The compiler inputs the files for
processing.

This option instructs the shell program to identify the specified files as
assembler sourcefiles, asif they had the extension . asm or . sl . Thefiles
are assembled at the appropriate processing stage, and the object codeis
made available to the linker.

For alist of the default extensions for each file type, see Table 3-1 on page 3-7.

These options can appear any number of times in the command line. Each option relates to one specified
fileor alist of files. The filesthat these options identify are processed normally in all other respects, and in
the same relative order as other listed files.

In the following example, theinput files fil el. ext and fil e2. bar, specified after the option - xc,
will be compiled asif they were C sourcefiles:

Example 3-5. Overriding file extensions

scc -c -xc filel.ext file2. bar

3-18

SC100 C Compiler

Shell Control Options

3.3.4 Output Filename and Location Options

Output filename and location options alow you to specify the name and/or directory for the output files
that the shell program produces. By default, the compiler assigns each output file the same name as the
input file and is stored in the current directory.

The stage at which the shell stops processing determines the default file type and extension for the output
files. For example, when you select the - cf e option, the output files that the Front End produces have the
extension .obj . If you wish, you can specify adifferent extension when you specify the file name. This
alters the way the shell treatsthis file. For more information about overriding file extensions, refer to
Section 3.3.3, “Overriding Input File Extensions.”

Y ou can select either or both of the following options.

-o file The output file is assigned the specified filename, and optionally the specified
extension. Any existing file with the same name in the current directory, or in the
specified directory, if the- r option is selected, is overwritten. Y ou can specify this
option more than once in the command line, for different files.

-r dir All output files are redirected to the specified directory. This option can be
specified only once in the command line.

In Example 3-6, theinput filefi | el. f oo will betreated as an input file to the linker (the default).

Example 3-6. Specifying output files

scc -o file.eld filel.foo

SC100 C Compiler 3-19

Using the SC100 C Compiler

3.3.5 Specifying C Language Options
Y ou can use the C language options described in this section to:

< inform the shell of the language version used in the source files,
e add debugging information to generated files, and
« to define whether variables of type char default to signed or unsigned.

3.3.5.1 Defining the language version

The default C language mode is the normal ANSI/ISO version with extensions, with all source files using
thestandard . ¢ extension. Y ou do not need to specify any language option if you use this mode. However,
if you use a different language version, you must select either the - ansi or the- kr option.

Language Version Option to Select Assumptions

Strict ANSI/ISO version of C -ansi option Front End assumes that all input source files

are to be in the strict ANSI/ISO version of C

with no extensions. The compiler flags any
extensions that it finds with warnings.

K&R (Portable C Compiler, or - kr option Shell program assumes that all source files are
PCC) dialect of C in this version of C.

See Section 3.4, “Language Features,” for details of the C language features supported in the default, strict
ANSI and K& R modes.

Y ou cannot compile source files in different C language versions simultaneoudy. If you need to compile
source filesin different versions, you must use a separate shell command line for each version.

3.3.5.2 Adding debugging information to files

Theoption - g tellsthe shell program to include debugging information in the output files produced by all
C compilations. The produced aobject files are somewhat larger asthey will contain source-level debugging
information.

The - Q0 option disables optimization. When you debug, we recommend combining the - g option and the
- Q0 option, so that optimization is disabled while you debug. Y ou can not use any other optimization level
with the - g option. If you specify an optimization level other than - Q0 in combination with - g, the
compiler issues the following warning message: “1 1 | egal comnbi nati on of options: -g cannot
be used with any code optini zation.” The SCC shell exits after displaying this message.

3.3.5.3 Changing the default char sign setting
Signed is the default setting for all char type variables.

« Tomakeall char type variables default to unsigned usethe - usc option.
« Tochangethesetting back to makeall char typevariablesdefault to signed, specify the- sc option.

3-20 SC100 C Compiler

Shell Control Options

3.3.5.4 Indicating fractional data-types in saturation

The-fractional option tellsthe compiler that the application you are compiling operates on fractional
data-types with the expected I TU saturation behavior. Thisis not the compilation default. Y ou must
specify this switch to use the ITU fractional intrinsics. - f r act i onal impliesthat your code contains
intrinsics.

Y ou must intricately know your code when using the- f r act i onal option. To obtain correct results, type
-fractional if your code containsintrinsics. If your code contains intrinsics and you do not type
-fractional , you will receive erroneous results.

3.3.6 Passing Options Through to Specific Tools

The options described in this section enable you to instruct the shell program to pass options to specific
tools, such asthe assembler or linker, as shown in Example 3-7.

Example 3-7. Passing multiple options to the same tool

SCC -Xasm -occ

Y ou can instruct the compiler to pass multiple options to the same tool in the same option statement, along
with the arguments for each option. Y ou must list multiple options and their arguments, where relevant,
within quotation marks.

When invoking atool several times, the compiler passes the pass-through options on each invocation. It
then continues to pass any other options that the shell program passes directly to the tool from the
command line.

Specify either of the following options:
- Xasm option Passes the specified option(s) and arguments to the assembler.

-XI'nk option Passes the specified option(s) and arguments to the linker.

Note: Usethe- memoption to passacommand file other than the default to thelinker. If you usethe- XI nk
option to do this, both the command file you are specifying and the default command file are passed
to the linker, resulting in errors.

SC100 C Compiler 3-21

Using the SC100 C Compiler

3.3.7 Setting the Options for Listings and Messages

The options in this section enable you to control the retention, display, and printing of diagnostic and
informational messages, and the generation of various listing and map files.

3.3.7.1 Generating listing files

By default the shell program does not retain the diagnostic and cross-reference information produced at
different processing stages. Y ou can select to retain one or more different types of information in listing
files.

Use any combination of the following optionsto generate listing files that contain the types of information
you require. You can specify each individua option only oncein a shell command line.

-de The Front End creates afile containing all error messages generated during the
compilation. The - de option retainsthiserror file. If you do not specify this option, the
errors display during processing, but are not kept. The compiler creates an error file for
each source file, with the same name as the source file and the extension . err.

-dm[file] Generates alink map file listing all the specific variables, applications and addresses
that the linker uses. If you do not specify afile name, the compiler creates afile with the
same hame as the executable, and the extension . map.

-do Includes the details of C data structures in the output assembly file, showing the offsets
for al field definitions in each data structure. Refer to Chapter 4, “Interfacing C and
Assembly Code,” for a detailed description of the C/assembler interface.

-dL Generatesa C list file for each sourcefile, listing the entire contents of the source file.
The compiler creates each list file with the same name as its corresponding source file,
and the extension . | i s.

-dL1 Generatesa C list file for each sourcefile, listing the entire contents of the source file,
with the addition of alist of #i ncl ude filesthat the source uses. The compiler creates
each list file with the same name as its corresponding source file, and the
extension . | i s.

-dL2 Generatesa C list file for each source file, listing the entire contents of the source file,
with the addition of expansions, such as macro expansions, line splices, and trigraphs.
The compiler creates each list file with the same name as its corresponding source file,
and the extension . | i s.

-dL3 Generatesa C list file for each source file, listing the entire contents of the source file,
with the addition of alist of #i ncl ude files, and expansions, such as macro expansions,
line splices, and trigraphs. The compiler creates each list file with the same hame as its
corresponding source file, and the extension . | i s.

-dx [file] Generates a cross-reference information file, providing detail s of cross-referencesin the
source file. If you do not specify a file name, the compiler creates afile with the same
name as the source file, and the extension . xrf .

-dc [0-4] Generates afile showing callsin graphical tree form, which you can print using a
postscript printer. Specify the size of the paper to use for the printout: O for paper size
AO, 1for Al, and so on.

3-22 SC100 C Compiler

Shell Control Options

3.3.7.2 Controlling the type of information displayed

Y ou can control the level and type of messages and information that the shell program displays using the
following options:

-gqor-w Quiet mode (the default). The shell program displays the minimum amount of information
(errorsonly), omitting normal notices and banners. This option is useful when running the
shell in batch mode or with the MAKE utility, when the display of normal progress
information is not required.

-V Verbose mode. The shell program displays/prints all the commands and command line
options used, asit proceeds through the different processing stages and invokes the
individual tools. The exact information output depends on the processing stages that the
shell performs.

-n Displays the specified shell processing actions without executing them. Y ou can use this
option before you invoke the shell and to check the actions the shell will take, based on the
list of files and arguments specified in the command line.

3.3.7.3 Suppressing warnings

By default the shell reports all errors and warnings. Y ou can suppress specific types of warnings using the
-W and - W options, which reduce the number of messages that the shell program generates. Thisis
useful if, for example, you are testing incompl ete sections of the program and you know in advance that
certain warnings will be produced.

Y ou can select either or both of the following options:

-W This option suppresses warnings on local automatic variables that are used before their
values are set. If you are testing partial code, which you know does not assign valuesto all
the local automatic variables, you can use this option to suppress all the "false" warnings
that would otherwise be issued.

-V By default, the compiler produces awarning for each module identified as missing during
the cross-file optimization process. Use this option if you wish to suppress these warnings,
for example when testing an incomplete application, or one that uses external modules.

3.3.7.4 Reporting all remarks and warnings

By default, the shell reports all errors and warnings, but does not report remarks unless you specifically
instruct it to do so. Select the option - Wl | to ensure that all remarks are reported, aswell as all warnings
and errors.

SC100 C Compiler 3-23

Using the SC100 C Compiler

3.3.8 Specifying the Hardware Model and Configuration

The options in this category let you override various default hardware and configuration settings.

3.3.8.1 Defining the architecture

The default architecture is SC140, which utilizes four MAC units. Unlessinstructed otherwise, the
compiler assumes, during the optimization phase, that four execution units are in use, and parallelizes the
code accordingly.

If you are compiling for a hardware configuration other than SC140, it is essential that you specify the
correct architecture. To change the assumed architecture, specify the - ar ch t ar get option, asillustrated
in Example 3-8.

Validvaluesfort arget aresc110 and sc140 (default).

Example 3-8. Defining the architecture

scc -arch sc110 filel.c

3.3.8.2 Configuration and Startup files

The default machine and application configuration files that the compiler uses, and the startup file that the
linker uses, are defined during the installation process. The following table provides brief descriptions of
the systems configuration and startup files. These files, and their use in the run-time environment, are
described in greater detail in Chapter 6, “ Runtime Environment.”

File Description

Machine configuration file includes information about logical and physical memory maps. This information
enables the global optimizer to dispatch variables to different memory areas in
internal ROM or RAM.

Application configuration file contains information about how the application software and the hardware
interact. The file includes sections about binding interrupt handlers, overlays, and
application objects to specific addresses.

Startup file the linker uses the startup files when it links the assembly code files with the
standard libraries, and defines such items as the interrupt vector and set up code
executed upon system initialization.

3.3.8.2.1 Defining specific configuration and startup files

Y ou may wish to select other files to be used for configuration setup and initialization instead of the
default files, for example, to specify certain devices that need initializing at startup.

To specify different filesfor use at initialization, select one or all of the following options. For each option,
specify the file name, and if the file is not in the current directory, specify the path.

-nt file The compiler reads the specified file instead of the default machine configuration
file.
-ma file The compiler reads the specified file instead of the default application

configuration file.

3-24 SC100 C Compiler

Shell Control Options

-crt file Thelinker links into the application of the specified file instead of the default
startup file.
-memfile The linker uses the specified command file instead of the default linker command

file(crt scsnmm cnd or crt scbnm cnd).

For more detailed information, refer to Chapter 6, “ Runtime Environment.”

3.3.9 Specifying modes

The SC100 architecture instruction set supports 15-bit, 16-bit, and 32-bit addresses. If the applicationis
small enough to alow all static datato fit into the lower 64K of the address space, then the compiler
generates more efficient code.

Small memory mode is the default, and assumes that all addresses are 16-bit. The compiler uses small
memory mode unless you specify big memory mode or tiny memory mode.

3.3.9.1 Specifying big memory mode

If your application does not fit into 64K bytes, meaning that the use of 32-bit absolute addressesis
required, you must instruct the shell to use the big memory model, by specifying the - nb option.

3.3.9.2 Specifying tiny memory mode

If your application can fit in lessthan 32K bytes, use the tiny memory mode, which isthe most efficient for
code size and performance. Instruct the shell to use the tiny memory model, by specifying the - nt option.
The .data section is loaded into the lowest address in memory and references to the .data section use code
seguences with smaller encodings.

3.3.9.3 Copying initialized variables from ROM

During development you would normally use a loader to set the values for global variables, and to load
these initialized variablesinto RAM at startup, together with the executable application.

When you finish development, if your final application does not use aloader, you must ensure that when
the completed application executes, the initialized variables are copied from ROM into RAM. To do this,
when you compile the final application version, specify the - nt om option.

Refer to Chapter 6, “Runtime Environment,” for more detailed information about the initialization of
variablesin the runtime environment.

3.3.9.4 Specifying big-endian mode

By default, the compiler generates code based on the assumption that the architecture operatesin
little-endian mode, meaning the least significant bits in the lower address. If you want to run the
application in an environment that operates in big-endian mode, meaning the most significant bitsin the
lower address, specify the option - be.

SC100 C Compiler 3-25

Using the SC100 C Compiler

3.4 Language Features

This section describes the different language modes that the SC100 C compiler accepts. It also provides
detailed information about the datatypes and si zes supported, fractional arithmetic representation, intrinsic
functions, pragmas, and predefined macros.

3.4.1 C Language Dialects

The compiler accepts three variations of the C language.:

* Normal ANSI/ISO versionwith Thisis the default mode. See Section 3.4.1.1, “ Standard
extensions Extensions.” for more details.

e Strict ANSI/ISO mode: Specified with the shell option - ansi . Any SO C extensions are
flagged with warnings.

K&R/PCC mode: Specified with the shell option - kr . The compiler accepts the older
K&R diaect of C, and provides amost complete compatibility with
the widely used UNIX PCC (pcc) dialect. See Section 3.4.1.2,
“K&R/PCC mode,” for details.

Y ou can not compile source files of different C language types together; however, once compiled you can
link them together into a single application.

3.4.1.1 Standard Extensions

This section lists the extensions that standard C programs normally accept. When compiling in strict
ANSI/ISO mode, the compiler issues warnings when it detects these extensions.

3.4.1.1.1 Preprocessor extensions
The compiler accepts the following preprocessor extensions:
« Comment text can appear at the end of preprocessing directives.

e The compiler scans numbers according to the syntax for numbers. Thus, 0x123e+1 is scanned as
three tokens instead of oneinvalid token.

e Thecompiler alowsthe#assert preprocessing extensionsof AT& T System V release 4. These
enable the definition and testing of predicate names. Such names are in a name space distinct from
al other names, including macro names. You can define a predicate name using a preprocessing
directive in one of two forms, as shown in Example 3-9:

Example 3-9. Defining a predicate name

#assert nane
#assert name(t oken-sequence)

In the first form, the predicate is not given a value. In the second form, it is given the value
token-sequence. Such a predicate can be tested in a#i f expression, as follows:

#nanme(t oken- sequence) . Thisexpression hasthevalue 1 if a#assert of that name with that
token-sequence has appeared, otherwise it hasthe value 0. You can assign a predicate more than one
value at agiven time.

3-26 SC100 C Compiler

Language Features

A predicate may be deleted by a preprocessing directive in one of two forms, as shown in
Example 3-10:

Example 3-10. Deleting a predicate

#unassert nane
#unassert nane(token-sequence)

The first form removes all definitions of the indicated predicate name. The second form removes
only the indicated definition, leaving any remaining definitions unchanged.

A number of predefined preprocessor macros are provided, as described in Section 3.4.6, “ Predefined
Macros.”

The pragmas described in Section 3.4.5, “Pragmas,” are available in all modes.

3.4.1.1.2 Syntax

The compiler accepts:

An empty trandation unit (input file), containing no declarations.

An extracomma at the end of an enumlist. Similarly, you can omit the final semicolon preceding
theclosing} of astruct or union specifier. The compiler issuesaremark in both cases, exceptinpcc
mode.

A label definition followed immediately by aright brace. (Normally, alabel definition must be
followed by a statement.) The compiler issues awarning.

An empty declaration (a semicolon with nothing before it). The compiler issues aremark.

Aninitializer expression that is a single value and used to initialize an entire static array, st r uct,
or uni on not enclosed in braces, except in strict ANSI C mode.

By default, the compiler acceptsast r uct with no named fields, but that has at least one unnamed
field. The compiler issues adiagnostic warning or error in strict ANSI C mode.

3.4.1.1.3 Declarations
The compiler accepts the following declaration extensions:;

Static functions declared in function and block scopes. The compiler movestheir declarationsto the
file scope.

The compiler allows benign redeclarations of t ypedef names, meaning that you can re declare a
t ypedef name in the same scope as the same type. The compiler issues awarning.

The compiler always accepts as mstatements and declarations, with one exception, which is when
compiling in strict ANSI C mode. The reason for thisisthat thereis a conflict with the ANSI C
standard. For example, the Front End interpretsasm(" xyz"); asanasmstatement by default,
while ANSI C interprets this as a call of an implicitly-defined function asm

The compiler accepts functions declared as asmfunctions, and recognizes _asmas a synonym for
asm An asmfunction body is represented by an uninterpreted null-terminated string containing the
text that appears in the source.

SC100 C Compiler 3-27

Using the SC100 C Compiler

An asmfunction must be declared with no storage class, with a prototyped parameter list, and with
no omitted parameters, as shown in Example 3-11:

Example 3-11. Declaring an asm function

asmvoid f(int,int) {

.

As an asmfunction must be output with a prototyped parameter list, these functions are valid for
ANSI C modes only.

3.4.1.1.4 Types Extensions

The compiler accepts:

Bit-fields with base types that are enuns or integer types, aswell asthetypesi nt and unsi gned
i nt. Theuse of any signed integer typeisequivalent to using typei nt , and the use of any unsigned
integer type is equivalent to using type unsi gned i nt .

The last member of ast r uct containing an incomplete array type. It may not be the only member
of thest ruct (otherwise, the st r uct would have zero size).

A file-scope array with an incomplete st r uct , uni on, or enum type asits element type. The type
must be completed before the array is subscripted (if it is subscripted), and by the end of the
compilation if the array is not ext er n.

Incomplete enumtags. You can define and resolve the tag name later by specifying the
brace-enclosed list.

Object pointer types and function parameter arrays that decay to pointersmay userestrict asa
typequalifier. Itspresenceisrecorded in the compiler so that optimizationsare performed that would
otherwise be prevented because of possible aliasing.

Thetypel ong fl oat asasynonym for doubl e.

Assignment of pointer typesin cases where the destination type has added type qualifiers that are
not at thetop level (for example, i nt ** toconst int **).

3.4.1.1.5 Expressions and statements

The compiler accepts the following extensions for expressions and statements:

The compiler allows assignment and pointer differences between pointersto types that are
interchangeable, but not identical, for example, unsi gned char * andchar *. Thisincludes
pointers to same-sized integral types (e.g., typicaly,i nt * and| ong *). The compiler issuesa
warning, except in pcc mode. Without a warning, the compiler may assign a string constant to a
pointer to any kind of character, without awarning.

In operations on pointers, a pointer to voi d isawaysimplicitly converted to another typeif
necessary, and anull pointer constant isalwaysimplicitly converted to anull pointer of theright type
if necessary. In ANSI C, some operators allow such conversions, while others do not, generally
where such a conversion would not be logical.

In an initializer, a pointer constant value may be cast to an integral type if the integral typeis big
enough to contain it.

3-28

SC100 C Compiler

Language Features

« Inanintegral constant expression, aninteger constant may be cast to a pointer type and then back to
an integral type.

» Incharacter and string escapes, if the character following the\ has no special meaning, the value
of the escape is the character itself. Thus“\ s” == “s”. Awarning isissued.

e Adjacent wide and non-wide string literals are not concatenated.

e Induplicate size and sign specifiers(e.g., short short orunsi gned unsi gned) the redundancy
isignored, and awarning is issued.

e _ ALIGNOF__ issimilartosi zeof , but returnsthe alignment requirement value for atype, or 1 if
thereis no alignment requirement. It may be followed by atype or expression in parentheses, as
shown in Example 3-12:

Example 3-12. Returning the alignment requirement

__ALI GNOF__(type)
__ALI GNOF__ (' expressi on)

The expression in the second form is not eval uated.
e ldentifiers may not contain dollar signs.

e I NTADDR _(expressi on) scanstheenclosed expression asaconstant expression, and converts
it to an integer constant (it isused in the of f set of macro).

« Thevaues of enumeration constants may be given by expressions that eval uate to unsigned
quantitieswhich fitintheunsi gned i nt rangebut notinthei nt range. A warning isissued when
such aresult is possible, as shown in Example 3-13:

Example 3-13. Out of range warning

/* Wien ints are 32 bits: */

enuma {w = -2147483648}; /* No warning */
enumb {x = 0x80000000}; /* No warning */
enumc {y = 0x80000001}; /* No warning */
enumd {z = 2147483649}; [* Varning */

e Theaddress of avariable withr egi st er storage class may betaken, and awarning isissued.

e Theexpression & .. isaccepted inthe body of afunction inwhich an ellipsis appearsin the
parameter list.

* Aneéllipsismay appear by itself inthe parameter list of afunction declaration, for example, f (...).
A diagnostic isissued in strict ANSI mode.

SC100 C Compiler 3-29

Using the SC100 C Compiler

External entities declared in other scopesarevisible, asshown in Example 3-14. A warningisissued.

Example 3-14. External entities in other scopes

void f1(d) { extern void f();
void f2(f

Vo
) (); /* Using out of scope declaration */ }

i
{

Pointers to incomplete arrays may be used in pointer addition, subtraction, and subscripting, as
shown below in Example 3-15. A warning isissued if the value added or subtracted isanything other
than a constant zero. Since the type pointed to by the pointer has zero size, the value added to or
subtracted from the pointer is multiplied by zero and therefore has no effect on the result.
Comparisons and pointer differences of such pairs of pointer types are also allowed. A warning is
issued.
Example 3-15. Pointers to incomplete arrays

int (*p)[];

q = p[o];

Pointersto different function types may be assigned or compared for equality (==) or inequality (! =)
without an explicit type cast, and awarning is issued.

A pointer to voi d may beimplicitly converted to or from a pointer to afunction type.

Intrinsic functions are recognized as extensions only in the default C language mode (ANSI C with
extensions). In al other modes they are treated as function calls.

3-30

SC100 C Compiler

Language Features

3.4.1.2 K&R/PCC mode

When you specify pcc mode, the SC100 C compiler accepts the traditional C language that the The C
Programming Language, first edition, by Kernighan and Ritchie (K& R), Prentice-Hall, 1978 defined. This
mode provides almost complete compatibility with the Reiser CPP and Johnson PCC (pcc), both widely
used as part of UNIX systems. Since there is no documentation of the exact behavior of those programs,
complete compatibility cannot be guaranteed.

In general, when compiling in pcc mode, the compiler attempts to interpret a source program that is valid
to pcc inthe sameway that pcc would. However, ANSI featuresthat do not conflict with this behavior are
not disabled.

In some cases where pcc alows a highly questionable construct, the compiler acceptsit but gives a
warning, where pcc would be silent. For example: 0x, a degenerate hexadecimal number, is accepted as
zero, but awarning isissued.

3.4.1.2.1 K&R/PCC mode preprocessor differences
The following are the preprocessor differences relative to the default standard mode:

» When preprocessing output is generated, the line-identifying directives have the pcc form instead
of the ANSI form.

e STDC _isleft undefined.

» Inpreprocessing output, the compiler deletes entire comments instead of replacing them with one
space. Extra spaces are not generated in textual preprocessing output to prevent pasting of adjacent
confusable tokens. As aresult, the charactersa/ **/ b are ab in preprocessor output.

» Thefirst directory searched for include files is the directory containing the file that contains the
#i ncl ude instead of the directory containing the primary source file.

e The compiler does not recognize Trigraphs.

» Macro expansion isimplemented differently. Argumentsto macros are not macro- expanded before
being inserted into the expansion of the macro. Any macro invocations in the argument text are
expanded when the macro expansion isrescanned. With thismethod, macro recursionispossible and
is checked for.

» Token pasting inside macro expansions is implemented differently. End-of-token markers are not
maintained, so tokens that abut after macro substitution may be parsed as a single token.

e The compiler recognizes macro parameter names inside character and string constants and gives
them substitutes.

e The compiler flags macro invocations having too many arguments with awarning rather than an
error. The compiler ignores the extra arguments.

e Thecompiler flags macro invocations having too few argumentswith awarning rather than an error.
A null string is used as the value of the missing parameters.

» Thecompiler ignores extra occurrences of #el se, after the first has appeared in an #i f block; and
instead issues awarning.

SC100 C Compiler 3-31

Using the SC100 C Compiler

3.4.1.2.2 K&R/PCC mode syntax differences
The following are the syntax differences relative to the default standard mode:

Thekeywordssi gned, const ,andvol ati | e aredisabled, so that they can be user identifiers. The
other non-K& R keywords (enumand voi d) are judged to have existed already in code and are not
disabled.

The = preceding an initializer may be omitted. A warning isissued. Thiswas an anachronism even
in K&R.

0x is accepted as a hexadecimal 0, with awarning.
1E+ is accepted as afloating point constant with an exponent of 0, with awarning.

The compound assignment operators may be written as two tokens (for example, += may be
written + =).

The compound assignment operators may be written in their old-fashioned reversed forms (for
example, -= may be written =-). A warning isissued.

Thedigits 8 and 9 are allowed in octal constants. (For example, the constant 099 has the
value 9*8+9, or 81.)

The escape\ a (aert) isnot recognized in character and string constants.

3.4.1.2.3 K&R/PCC mode differences for declarations
The following are the declaration differences relative to the default ANSI mode:

Declarations of theformt ypedef some-type voi d; areignored.
The names of functions and of externa variables are always entered at the file scope.

A function declared st at i ¢, which isused and never defined, istreated asif its storage class were
ext er n (instead of causing an error for being undefined).

A file-scope array that has an unspecified storage class and remains incomplete at the end of the
compilation will betreated asif its storage classisext er n. In ANSI mode, the number of elements
is changed to 1, and the storage class remains unspecified.

When afunction parameter list begins with at ypedef identifier, the parameter list is considered
prototyped only if thet ypedef identifier isfollowed by something other than acomma or right
parenthesis, as shown below in Example 3-16. Function parameters are allowed to have the same
names ast ypedef identifiers. In the normal ANSI mode, any parameter list that beginswith a

t ypedef identifier is considered prototyped, and Example 3-16 would produce an error.

Example 3-16. Prototyped parameter list

typedef int t;
int f(t) {} /* dd-style list */
int g(t x) {} /* Prototyped list, paraneter x of typet */

The empty declaration st ruct x; will not hide an outer-scope declaration of the sametag. Itis
taken to refer to the outer declaration.

3-32

SC100 C Compiler

Language Features

In a declaration of amember of ast ruct or uni on, the declarator list may be omitted entirely, to
specify an unnamed field which requires padding, as shown in Example 3-17. Such afield may not
be a bit-field.

Example 3-17. Omitting the declarator list

struct s {char a; int; char b[2];} v; /* sizeof(v) is 3 */

No warning is generated for a storage specifier appearing in other than the first position in alist of
specifiers (asinint stati c).

Free-standing tag declarations are allowed in the parameter declaration list for a function with
old-style parameters.

Declaration specifiers are allowed to be completely omitted in declarations. (ANSI C allowsthis
only for function declarations.) Thusi ; declaresi asani nt variable. A warningisissued.

Anidentifier in afunction is alowed to have the same name as a parameter of the function. A
warning is issued.

3.4.1.2.4 K&R/PCC mode type differences
The following are the type differences relative to the default standard mode:

Integral types with the same representation (size, signedness, and alignment) will be considered
identical and may be used interchangeably. For example, thismeansthat i nt and| ong will be
interchangeable if they have the same size.

Al'l enuns aregiventypei nt.In ANSI mode, smaller integral types will be used if possible.

A “plain” char isconsideredto bethesameaseither si gned char orunsi gned char, depending
on the command-line options. IN ANSI C, “plain” char isathird type distinct from both si gned
char and unsi gned char.

All 1 oat functions are promoted to doubl e functions, and any f | oat function parameters are
promoted to doubl e function parameters.

All f1 oat operations are executed as doubl e.

Thetypes of large integer constants are determined according to the K&R rules. They will not be
unsi gned in some cases where ANSI C would define them that way.

SC100 C Compiler 3-33

Using the SC100 C Compiler

3.4.1.2.5 K&R/PCC mode differences: expressions and statements

The following are the differences for expressions and statements relative to the default standard mode:

Assignment is allowed between pointers and integers, and between incompatible pointer types,
without an explicit cast. A warning is issued.

A field sdlection of theform p- >f i el d isalowed evenif p doesnot pointtoastruct oruni on
that containsfi el d. Inthiscontext, p must be a pointer or an integer. Similarly, x. fiel d is
dlowedevenif x isnotast ruct oruni on that containsfi el d.Inthiscase, x mustbean! val ue.
In both cases, if fi el d isdeclared asafi el d inmorethanonestruct or uni on, it must have
the same offset in all instances.

Overflows detected while folding signed integer operations on constants will cause warnings rather
than errors.

A warning will beissued for an & operator applied to an array. The type of such an operation is
“address of array element” rather than “address of array”.

For the shift operators << and >>, the usual arithmetic conversions are done on the operands as they
would be for other binary operators. The right operand isthen converted toi nt , and the result type
is the type of the left operand. In ANSI C, the integral promotions are done on the two operands
separately, and the result type is the type of the |eft operand. The effect of this differenceisthat, in
pcc mode, al ong shift count will force the shift to be done as| ong.

String literals will not be shared. Identical string literals will cause multiple copies of the string to
be allocated.

The expression si zeof may be applied to bit-fields. The size is that of the underlying type (for
example unsi gned i nt).

Any | val ues cast to atype of the samesizeremain| val ues, except when they involve afloating
point conversion.

A warning rather than an error isissued for integer constants that are larger than can be
accommodatedinanunsi gned | ong. Thevalueistruncated to an acceptable number of low-order
bits.

Expressionsinaswi t ch statement are cast toi nt . This differs from the ANSI C definition in that
al ong expression may be truncated.

The promotion rules for integers are different: unsi gned char andunsi gned short are
promoted to unsi gned i nt .

3-34

SC100 C Compiler

Language Features

3.4.1.2.6 K&R/PCC differences: remaining incompatibilities

The additional known cases where the compiler is hot compatible with pcc are as follows:

Token pasting is not implemented outside of macro expansions (meaning, in the primary sourceline)
when two tokens are separated only by acomment. That is, a/ **/ b isnot considered to be ab. The
pcc compiler’s behavior in such acase can be obtained by preprocessing to atext file and then
compiling that file.

Thetextual output from preprocessing isalso equivalent but not identical. The blank lines and white
space will not be exactly the same as those produced in pcc.

The pcc compiler considers the result of a?: operator to be anl val ue if the first operand is
constant and the second and third operands are compatible | val ues. The compiler never treats the
result of the ?: operator asan| val ue.

Thepcc compiler misparsesthethird operand of a?: operator in away that some programs exploit,
asfollows:

i ?2j : k +=1 ispasedbypccasi ?j : (k +=1)

Thisisnot correct, since the precedence of the += operator islower than the precedence of the ?:
operator. The compiler will generate an error in such acase.

Thel i nt utility recognizes the keywords for its special comments anywhere in a comment,
regardless of whether they are preceded by other text in the comment. The compiler only recognizes
the keywords when they are the first identifier following an optional initial series of blanks and/or
horizontal tabs. Inaddition, | i nt recognizesonly asingledigit of the VARARGS count. The compiler
accumulates as many digits as appear in the count.

SC100 C Compiler 3-35

Using the SC100 C Compiler

3.4.2 Types and Sizes

The data types that the compiler supports are summarized in Table 3-3 below. The table shows the size for
each datatypein memory and in the two register types, the 40-bit data register (Dn), and the 32-bit address
register (Rn). Table 3-3 also shows the required alignment and the vaue range for each data type, together
with areference to the section in this chapter which provides greater detail about the data type.

Table 3-3. Data Types and Sizes

Size (in bits) Range Details

Type Memory Dn Rn Align Minimum Maximum Section Page
char 8 40 32 8 -128 127 3421 3-37
unsigned char 8 40 32 8 0 255 3421 3-37
short 16 40 32 16 -32,768 32,767 3422 3-38
unsigned short 16 40 32 16 0 65,535 3422 3-38
int 32 40 32 32 | -2,147,483,648 2,147,483,647 3422 3-38
unsigned int 32 40 32 32 0 4,294,967,295 3422 3-38
long 32 40 32 32 | -2,147,483,648 2,147,483,647 3422 3-38
unsigned long 32 40 32 32 0 4,294,967,295 3422 3-38
float, double, 32 40 32 32 -1.17E-38 1.17E+38 3.4.23 3-39
and long double

fractional short* 16 40 - 16 -1 0.99969842 3.424 3-40
;‘:ﬁlzctional long / 32 40 - 32 -1 0.9999999953 3424 3-40
pointer 32 40 32 32 0 OXFFFFFFFF 3.4.25 3-40

1. Fractional short is not a language type. It can be used with intrinsic functions only, and maps to the
predefined type short.

2. Fractional long/int is not a language type. It can be used with intrinsic functions only, and maps to the

predefined type long/int.

3-36

SC100 C Compiler

Language Features

3.4.2.1 Characters

A character, whether signed or unsigned, is stored in memory in one byte (8 bits), and is always aligned on

an 8-bit boundary. Arrays of characters occupy one byte per character. Figure 3-5 shows the memory
layout for characters.

Bytes * * * *

char 1 char 2 char 3 char 4

Figure 3-5. Characters—Memory Layout

When loaded into registers, signed characters are signed extended, while unsigned characters are zero
extended. Figure 3-6 illustrates the layout for signed and unsigned characters in the Dn (40-bit) data
register. “S’ indicates the signed extension of the value.

Bytes * * * * *
char (signed) S S S char

Bytes * * * * *
char (unsigned) 0 0 0 char

Figure 3-6. Characters—Dn Register Layout

Figure 3-7 shows the layout for signed and unsigned charactersin the Rn (32-bit) address register.

Bytes * * * *
char (signed) S S char
Bytes * * * *
char (unsigned) 0 0 char

Figure 3-7. Characters—Rn Register Layout

SC100 C Compiler

3-37

Using the SC100 C Compiler

3.4.2.2 Integers

Integer arithmetic is performed using data sizes appropriate to the arithmetic operation. Short integers use
a least 16-bit wide operations (single-precision integer arithmetic), and long integers use at least 32-bit
(double-precision integer arithmetic).

Short and long integers are stored in memory using little-endian representation (the least significant bitsin
the lower address), unless the option - be is specified.

Integer arithmetic overflow wraps around and does not result in any additional side effects.
Figure 3-8 shows the memory layout for short and long integers.

Bytes * * * *
short 1 short 2

Bytes * * * *

long 1

Figure 3-8. Integers—Memory Layout
Short integers must be aligned on 2-byte (16-bit) boundaries, while long integers must be aligned on a

4-byte (32-bit) boundary. Figure 3-9 illustrates the alignment of short and long integers, in conjunction
with characters.

Bytes * * * *

char 1 short 1

long 1

short 2 char 2

long 2

Figure 3-9. Integers—Alignment

Aswith characters, when loaded into registers, signed integers are signed extended, while unsigned
integers are zero extended.

3-38 SC100 C Compiler

Language Features

Figure 3-10 illustrates the layout for signed and unsigned short and long integers in the Dn (40-bit) data
register. “ S’ indicates the signed extension of the value.

Bytes * * * * *
short (signed) S S short
Bytes * * * * *
short (unsigned) 0 0 short
Bytes * * * * *
long / int (signed) S long / int
Bytes * * * * *
long / int (unsigned) 0 long / int

Figure 3-10. Integers—Dn Register Layout

Figure 3-11 shows the layout for signed and unsigned short and long integers in the Rn (32-bit) address
register.

Bytes * * * *
short (signed) S short
Bytes * * * *
short (unsigned) 0 short
Bytes * * * *
long / int (signed) long / int
Bytes * * * *
long / int (unsigned) long / int

Figure 3-11. Integers—Rn Register Layout

3.4.2.3 Floating point

Floating point, double, and long double type integers are mapped to a single precision | EEE-754 type,
using 32 hits (4 bytes). The compiler generates calls for library functions to evaluate floating point
expressions. The representation of these integersin memory and in the registers is exactly the same as for
long integers.

SC100 C Compiler 3-39

Using the SC100 C Compiler

3.4.2.4 Fractional representation

Since C does not provide built-in support for fractional types, the syntactic representation of fractional
types and operationsisimplemented by intrinsic functions using integer data types. See Section 3.4.4,
“Intrinsic Functions,” for details of the intrinsic functions supported.

Fixed -point arithmetic is performed using 16-bit, 32-bit, 40-bit, and 64-bit operations. Fractional integers
are stored in memory using little-endian representation, meaning the least significant bits in the lower
address, unless the option - be is specified.

Fractional type overflows may saturate and do not result in any additional side effect. Rounding and
saturation modes are determined as part of the startup code, or with optional intrinsic function calls.

Operations on double and extended precision type objects are limited to assignments and fractional
arithmetic using intrinsic functions only. See Section 3.4.3, “Fractional and Integer Arithmetic,” for further
information. Integer operations on extended precision types are not supported.

Fractional types are mapped to their corresponding predefined types. A fractional short mapsto the
predefined type shor t , afractional | ong maps to the predefined type | ong, and afractional i nt mapsto
the predefined typei nt .

Figure 3-12 illustrates the layout for fractional short and long integers in the Dn (40-bit) data register,
which isthe only register used for fractional integer types. “S’ indicates the signed extension of the value.

Bytes * * * * *
short fractional S short fractional 0
(signed)
Bytes * * * * *
long / int S long / int fractional

fractional (signed)

Figure 3-12. Fractional Integers—Dn Register Layout

When loading data from memory into data registers, the compiler aligns the datain the registers according
to the context in which the datais used.

3.4.2.5 Pointers

Pointers contain addresses of data objects or functions. Pointers are represented in memory using 32 bits
(4 bytes). In the small memory model, although pointers are represented in memory using 32 bits, only 16
bits are meaningful. The representation of pointersin memory and in the registersis exactly the same asfor
unsigned long integers, as shown in Section 3.4.2.2, “Integers.”

3.4.2.6 Bit-fields

Members of structures are always allocated on byte boundaries, and are aligned according to their
fundamental base type. However, bit-fields in structures can be allocated at any bit and of any length not
exceeding the size of along word (32 bits). Signed and unsigned bit-fields are permitted and are sign
extended when fetched. A bit-field of typei nt isconsidered si gned.

3-40 SC100 C Compiler

Language Features

Bit-fields are always allocated from the low-order end of aword (right to left or little-endian), even if the
option - be is specified. Bit-field sizes are not allowed to cross along word boundary.

In the following example, the structure nor e has 4-byte alignment and will have asize of 4 bytes. Thisis
because the bit-fields in the structure are governed by the fundamental type | ong which requires a 4-byte
aignment.

Example 3-18. Bit-field alignment to long word (1)

struct nore {
long first : 3;
unsi gned i nt second : 8§;

1

The structure | ess shown in Example 3-19 requires only a one byte alignment because thisisthe
regquirement of the fundamental type char used in this structure.

Example 3-19. Bit-field alignment to character

struct less {
unsi gned char third : 3;
unsi gned char fourth : 8;

1

The alignments are driven by the underlying type, not the width of the fields. These alignments are to be
considered along with any other structure members.

In Example 3-20 below, the structure car ef ul requires a 4-byte alignment; its bit-fields require only a
one byte alignment, but thefield f | uf f y requires a 4-byte alignment because its fundamental typeis
| ong.

Example 3-20. Bit-field alignment to long word (2)

struct careful {
unsi gned char third : 3;
unsi gned char fourth : 8;
long fluffy;

}

Fields within structures and unions begin on the next possibl e suitably aligned boundary for their datatype.
For fields that are not hit-fields, thisis a suitable byte alignment. Bit-fields begin at the next available bit
offset, with the following exception: the first bit-field after amember that is not a bit-field will be allocated
on the next available byte boundary.

In the following example, the offset of thefield ¢ is one byte. The structure itself has 4-byte alignment and
isfour bytesin size because of the alignment restrictions introduced by using the | ong underlying data
type for the bit-field.

Example 3-21. Bit-field offset

struct s {
int bf: 5;
char c;

b

SC100 C Compiler 3-41

Using the SC100 C Compiler

3.4.3 Fractional and Integer Arithmetic

The ability to perform both integer and fractiona arithmetic is one of the strengths of the SC100 C
compiler.

Fractional arithmetic is typically required for computation-intensive algorithms such as digital filters,
speech coders, vector and array processing, digital control, or other signal processing tasks. In this mode,
the datais interpreted as fractional values, and the computations are performed interpreting the data as
fractional. Fractional arithmetic examples are shown in Example 3-22.

Often, saturation is used when performing calculations in this mode to prevent the severe distortion that
occursin an output signal generated from a result where a computation overflows without saturation.
Saturation can be selectively enabled or disabled so that intermediate calculations can be performed
without limiting, and limiting is only done on final results.

Example 3-22. Fractional arithmetic examples

05* 0.25 ->0.125
0.625 + 0.25->0.875
0.125/0.5->0.25
05>>1->0.25

It isimportant to note that the notation used in Example 3-22 isfor illustration purposes only, since C does
not support the specification of fractional constants using floating-point notation. The compiler
implements fractional arithmetic using intrinsic functions based on integer data types. For more
information, see Section 3.4.2.4, “Fractiona representation,” and Section 3.4.4, “Intrinsic Functions.”

Integer arithmetic isinvaluable for controller code, array indexing and address computations, peripheral
setup and handling, bit manipulation, and other general purpose tasks, as shown in Example 3-23.

Example 3-23. Integer arithmetic examples

4*3 ->12
1201 + 79 -> 1280
63/9 ->7
100<<1 -> 200

3-42 SC100 C Compiler

Language Features

Datain amemory location or register can be interpreted as fractional or integer, depending on the needs of
auser’s program. Table 3-4 shows how a 16-bit value can be interpreted as either afractional or integer
value, depending on the location of the binary paint.

Table 3-4. Interpretation of 16-bit Data Values

Binary Hexadecimal Integer Value Fractional Value
Representation! Representation (decimal) (decimal)
0.100 0000 0000 0000 0x4000 16384 0.5
0.010 0000 0000 0000 0x2000 8192 0.25
0.001 0000 0000 0000 0x1000 4096 0.125
0.111 0000 0000 0000 0x7000 28672 0.875
0.000 0000 0000 0000 0x0000 0 0.0
1.100 0000 0000 0000 0xC000 -16384 -0.5
1.110 0000 0000 0000 0xE000 -8192 -0.25
1.111 0000 0000 0000 0xF000 -4096 -0.125
1.001 0000 0000 0000 0x9000 -28672 -0.875

1. Note: This corresponds to the location of the binary point when interpreting the data as fractional. If the data
is interpreted as integer, the binary point is located immediately to the right of the LSB.

The following equation shows the relationship between a 16-bit integer and a fractiona value:
Fractional Value = Integer Value/ (21°)

Thereisasimilar equation relating 40-bit integers and fractional values:

Fractional Value = Integer Value/ (231)

Table 3-5 shows how a 40-bit value can be interpreted as either an integer or fractional value, depending
on the location of the binary point.

Table 3-5. Interpretation of 40-bit Data Values

Hexadecimal 40-bit Integer in Entire 16-bit Integer in MSP Fractional Value
Representation Accumulator (decimal) (decimal) (decimal)
0x0 4000 0000 1073741824 16384 0.5
0x0 2000 0000 536870912 8192 0.25
0x0 0000 0000 0 0 0.0
OxF C000 0000 -1073741824 -16384 -0.5
OxF E00O 0000 -536870912 -8192 -0.25

SC100 C Compiler 3-43

Using the SC100 C Compiler

The following code fragment illustrates the use of integer arithmetic:

Example 3-24. Integer arithmetic computation

a = a + b*c;

Example 3-25 provides an example of the use of an intrinsic function to implement fractional arithmetic.

Example 3-25. Fractional arithmetic computation

a =L mac(a, b, c);

Section 3.4.4, “Intrinsic Functions,” describes the use of intrinsic functions in greater detail.

3-44 SC100 C Compiler

Language Features

3.4.4 Intrinsic Functions

The compiler supports alarge number of intrinsic (built-in) functions that map directly to SC100 assembly
instructions. As C does not support fractional types and operations, these intrinsic functions enable
implementation of fractional operations using integer data types.

The syntax of the compiler group of intrinsic functions is structured for full compatibility with the ETSI
and ITU reference implementations of bit-exact standards.

3.4.4.1 Data types for intrinsic functions

The following four data types are defined for specific use with intrinsic functions:

e Fractional short, a 16-bit fractional value mapped to a short, as described in Section 3.4.2.4,
“Fractional representation.”

» Fractional long, a 32-bit fractional value mapped to along, as described in Section 3.4.2.4,
“Fractional representation.”

» Extended precision fractional, a 40-bit value which can only be used in intrinsic functions.
See Section 3.4.4.1.1, “Extended precision fractional,” for details.

» Double precision fractional, a 64-bit value which can only be used in intrinsic functions.
See Section 3.4.4.1.2, “Double precision fractional,” for details.

Extended and double precision fractional types enable algorithms to be defined which require precision
larger than 32 bits. These data types can be used only with intrinsic functions and with assignments.
Variables defined as extended and double precision fractionals cannot be used for standard arithmetical or
other operations.

3.4.4.1.1 Extended precision fractional

The extended precision fractional (Wor d40) is a40-bit data type which occupies the entire Dn (40-hit)
register, as shown in Figure 3-13:

Bytes 0 1 2 3 4
extended precision guard high low
fractional bits

Figure 3-13. Extended Precision Fractional—Dn Register Layout

This datatype is mapped in the compiler as a structure containing two elements:
e A 32-bitinteger placed to the right of the binary point.

» AnB8-bitinteger placed to theleft of the binary point. These*“guard bits’ can be used to ensureamore
accurate result when an overflow occurs.

When stored in memory, an extended precision fractional variable occupies 64 bits. The least significant
32 bits are stored in the first 32-bit word, and the 8 most significant guard bits are stored in the second
32-bit word in an undefined position.

See Table 3-6 on page 3-47 for alist of intrinsic functions for fractional arithmetic using guard bits.

See Example 3-27 on page 3-51 for an illustration of the use of intrinsic functions with extended precision
fractional variables.

SC100 C Compiler 3-45

Using the SC100 C Compiler

3.4.4.1.2 Double precision fractional

The double precision fractional datatype (Wor d64) consists of 64 bits, all of which are assumed to beto
the right of the binary point. This datatype is mapped in the compiler as a structure containing two 32-hit
elements.

See Table 3-6 on page 3-47 for alist of intrinsic functions for double precision data types.

3.4.4.1.3 Fractional constants

Fractional constants require integer notation, since floating point notation is not supported. For example, to
expressthevaue 0. 5 asafractional constant, the integer representation in hexadecimal must be used in
the source code, in this case 0x4000. For further examples of fractional values and their corresponding
hexadecimal representations, see Table 3-4 on page 3-43.

3.4.4.1.4 Initializing variables with fractional values
Variables can be initialized as fractiona values, using the following macros:
e WORD16 initializes avaue as a fractional short.
e WORD32 initializes avalue as afractional long.
For example, short x = WORD16(0. 5) initializesx as afractional short with the value 0x4000.

3.4.4.2 Intrinsic function categories

The following categories of intrinsic functions are provided:
e Fractiona arithmetic
e Long fractiona arithmetic
» Double precision fractional arithmetic
» Extended precision fractional arithmetic, with guard bits
» Architecture primitives
» Architecture primitives that generate identical assembly instructions
e Bitreverse addressing

Table 3-6 on page 3-47 lists all the supported intrinsic functions by category, with a brief description of
each function. See Section 7.15, “Built-in Intrinsic Functions (prototype.h),” on page 7-21, for more
detailed information about each of the fractional arithmetic and long fractional arithmetic intrinsic
functions.

3-46 SC100 C Compiler

Language Features

Section 3.4.4.3, “ Intrinsic functions examples,” which follows Table 3-6, contai ns example code segments

illustrating the use of a number of intrinsic functions.

Table 3-6. Intrinsic Functions

a) Fractional arithmetic

Intrinsic Function Declaration Description

add short add(short,short) Short add

sub short sub(short,short) Short subtract

mult short mult(short,short) Short multiply

div_s short div_s(short,short) Short divide

mult_r short mult_r(short,short) Multiply and round

L_mac long L_mac(long,short,short) Multiply accumulate

mac_r short mac_r(long,short,short) Multiply accumulate and round

L_msu long L_msu(long,short,short) Multiply subtract

msu_r short msu_r(long,short,short) Multiply subtract and round

abs_s short abs_s(short) Short absolute value

negate short negate(short) Short negate

round short round(long) Round

shl short shi(short,short) Short shift left

shr short shr(short,short) Short shift right

shr_r short shr_r(short,short) Short shift right and round

norm_s short norm_s(short) Normalize any fractional value

max short max(short,short) Maximum value of any two short
fractional values

min short min(short,short) Minimum value of any two short
fractional values

saturate short saturate(short) Short saturation

SC100 C Compiler

3-47

Using the SC100 C Compiler

Table 3-6. Intrinsic Functions (Continued)

b) Long fractional arithmetic

Intrinsic Function Declaration Description

L_add long L_add(long,long) Long add

L_sub long L_sub(long,long) Long subtract

L_mult long L_mult(short,short) Long multiply

extract_h short extract_h(long) Extract 16 MSB of long word

extract_| short extract_l(long) Extract 16 LSB of long word

L_deposit_h long L_deposit_h(short) Deposit short in MSB

L_deposit_| long L_deposit_I(short) Deposit short in LSB

L_abs long L_abs(long) Long absolute value

L_negate long L_negate(long) Long negate

norm_| short norm_I(long) Normalize any long fractional value

L_max long L_max(long,long) Maximum value of any two long
fractional values

L_min long L_min(long,long) Minimum value of any two long
fractional values

L_shl long L_shl(long,short) Long shift left

L_shr long L_shr(long,short) Long shift right

L_shr_r long L_shr_r(long,short) Long shift right and round

L_sat long L_sat(long) Long saturation

c) Double precision fractional arithmetic

Intrinsic Function

Declaration

Description

D_mult
D_mac
D_msu
D_add

D _sub
D_cmpeq
D_cmpgt
D_sat
D_round
D_set

D_extract_|

D_extract_h

Word64 D_mult(long,long)
Word64 D_mac(Word64,long,long)
Word64 D_msu(Word64,long,long)
Word64 D_add(Word64,Word64)
Word64 D_sub(Word64,Word64)
short D_cmpeq(Word64,Word64)
short D_cmpgt(Word64,Word64)

Word64 D_sat(Word64)
long D_round(Word64)

Word64 D_set(long,unsigned long)

unsigned long D_extract_I(Word64)

long D_extract_h(Word64)

Double precision multiply

Double precision multiply accumulate
Double precision multiply subtract
Double precision add

Double precision subtract

Double precision compare equal
Double precision compare greater than
Double precision saturation

Double precision round

Concatenate two longs into one double
precision value

Extract 32 LSB of double precision
value

Extract 32 MSB of double precision
value

3-48

SC100 C Compiler

Language Features

Table 3-6. Intrinsic Functions (Continued)

d) Extended precision fractional arithmetic (with guard bits)

Intrinsic Function

Declaration

Description

X_mult
X_mac

X_msu
X_set

X_add
X_sub
X_shl
X_shr
X_extract_h
X_extract_|
X_round
X_norm

X rol

X ror
X_abs
X_sat

X_or

X_trunc
X_extend

X_cmpeq

X_cmpgt

Word40 X_mult(short,short)
Word40 X_mac(Word40,short,short)

Word40 X_msu(Word40,short,short)
Word40 X_set(char,unsigned long)

Word40 X_add(Word40,Word40)
Word40 X_sub(Word40,Word40)
Word40 X_shl(Word40,short)
Word40 X_shr(Word40,short)
short X_extract_h(Word40)

short X_extract_|(Word40)

short X_round(Word40)

short X_norm(Word40)

Word40 X_rol(Word40)

Word40 X_ror(Word40)

Word40 X_abs(Word40)

long X_sat(Word40)

Word40 X_or(Word40,Word40)

long X_trunc(Word40)
Word40 X_extend(long)

short X_cmpeq(Word40,Word40)

short X_cmpgt(Word40,Word40)

Short multiply to long long word

Short multiply accumulate to long long
word

Short multiply subtract to long long word

Concatenate char and unsigned long
into one long long word

Long add including guard bits

Long subtract including guard bits
Long shift left with guard bits

Long shift right with guard bits
Extract 16 MSB of long long word
Extract 16 LSB of long long word
Round long long value

Normalize any long long fractional value
Rotate left a long long word

Rotate right a long long word

Long absolute value with guard bits
Long saturation including guard bits

Logical OR two long values with guard
bits

Truncate guard bits

Sign extend long value to include guard
bits

Fractional compare equal with guard
bits

Fractional compare greater than with
guard bits

SC100 C Compiler

3-49

Using the SC100 C Compiler

Table 3-6. Intrinsic Functions (Continued)

e) Architecture primitives

Intrinsic Function

Declaration

Description

L_rol
L _ror

mpyuu

mpyus

mpysu

setnosat
setsat32
set2crm

setcnvrm

long L_rol (Iong)
long L_ror(long)
I ong nmpyuu(l ong, | ong)

I ong mpyus(| ong, | ong)

| ong mpysu(l ong, | ong)

set nosat ()
set sat 32()
set 2crm()

setcnvrm()

Rotate left a long
Rotate right a long

Long multiply 16 LSB of two long words,
treating both words as unsigned values

Long multiply 16 LSB of the first long
word, treated as an unsigned value, by
16 MSB of the second long word,
treated as signed

Long multiply 16 MSB of the first long
word, treated as a signed value, by 16
LSB of the second long word, treated as
unsigned

Set saturation mode off
Set saturation mode on

Set rounding mode to
two’s-complement rounding mode

Set rounding mode to convergent
rounding mode

f) Architecture primitives that generate identical assembly instructions

Intrinsic Function

Declaration

Description

debug voi d debug() Enter Debug mode

debugev voi d debugev() Generate Debug event

mark voi d mark() If trace buffer enabled, write program
counter to trace buffer

stop voi d stop() Enter St op low power mode

trap void trap() Execute Tr ap exception

wait voi d wait () Enter WAi t low power mode

ei void ei() Enable interrupts

di voi d di() Disable interrupts

illegal void illegal () Executei | | egal exception

0) Bit reverse addressing

Intrinsic Function Declaration Description

InitBitReverse

I nitBitReverse

Allocate a bit reverse iterator

BitReverseUpdate Bi t Rever seUpdat e Increment the iterator with bit reverse
EndBitReverse EndBi t Rever se Free bit reverse iterator
3-50 SC100 C Compiler

Language Features

3.4.4.3 Intrinsic functions examples

The following example illustrates the use of a number of intrinsic functions.

Example 3-26. Intrinsic functions

#i ncl ude <prototype. h>
void lir(short Input[], short Coef[], short FiltQut[])
{

long L_Sum

short int Stage, Snp;

FiltQut[0] = Input[O0];

for (Smp = 1; Smp < S_LEN; Smp++)
{
L Sum = L_nsu(LPC ROUND, FiltQut[Snhp - 1], Coef[0]);
for (Stage = 1; ((0 < (Snp - Stage)) && Stage < NP); Stage++)
L Sum= L nsu(L_Sum FiltQut[Snmp - Stage - 1], Coef[Stage]);
L Sum = L_shl (L_Sum ASHI FT);
L_ Sum = L_nsu(L_Sum Input[Snp], 0x8000);
FiltQut[Snp] = extract_h(L_Sunj;

Example 3-27 illustrates the use of extended precision variables and intrinsic functions using guard bits:

Example 3-27. Intrinsic functions using extended precision

#define ML 10

#define M2 10

#i ncl ude <prototype. h>
docorr ()

int L_sanple[10];

i nt coeff[10]

i nt sanpl e[10]

int j, i;

int shift val;

short corr_O;

Word40 E acc, E sum

E acc = X extend(0); E sum= X extend(0);
for (i =0; i < M,; i++)

{
(J =0, j <M j+)
_acc X mac (E acc, sanple[j], coeff[j]);
L sarrpl e[l] = X sat (E_acc);
E acc = X abs(E _acc);
E sum = X add(E_sum E_acc);

[1 R

}
shift_val = X _norm(E_sun);
corr_0 = 0;
for (i =0; i < M, i+4+)
{
sample[i] = round (L_shr (L_sanple[i], shift_val));
corr_0 = sub (corr_0, sample[i]);
}

corr = corr_QO;

SC100 C Compiler 3-51

Using the SC100 C Compiler

3.4.5 Pragmas

Pragmas allow you greater control over your application, enabling you to give the compiler specific
additional information about how to process certain statements. The pragmas that you specify in your code
provide the compiler with context-specific hints which can save the compiler unnecessary operations, and
help to further enhance the optimization process.

Y ou can include as many pragmas as necessary in your source code. The sections that follow describe the
syntax and placement rules for pragmas.

3.4.5.1 Syntax

The pragmas supported by the compiler have the following general syntax:
#pragma pragnma-nane [argunent(s)]

One or more of the arguments may be optional. Arguments are comma-delimited.

Each pragma must fit into one line.

3.45.2 Placement

Each pragmalis applicable only in a certain context, and must be placed accordingly. Four categories of
pragmas can be defined according to the placement rules, as follows:

» Pragmaswhich apply to functions can appear only inthe scope of the function, after the opening “{".

» Pragmas which apply to statements must be placed immediately before the relevant statement, or
immediately before any comment lines which precede the statement.

» Pragmas which apply to variables must follow the object definition, or any comment lines which
follow that definition. Objects referred to by pragmas must be explicitly defined.

The pragmas supported by the compiler are listed in Table 3-7 on page 3-53. The sections that follow the
table provide a brief summary and example of the syntax and use of each pragma. The detailed functioning
of each pragma s described in Chapter 5, “ Optimization Techniques and Hints.”

3-52 SC100 C Compiler

Language Features

Table 3-7. Pragmas

h) Function pragmas Description Section Page
#pragma inline Forces function inlining. 3.45.3.1 3-54
#pragma noi nline Disables function inlining. 3.453.1 3-54
#pragma save_ct xt Forces save and restore of all 3.453.2 3-54
registers that are used in this
procedure.
#pragma external func Defines a function as externaltothe 3.4.53.3 3-55
[name = string, C application, or as afu_nction that
convention = nunber, ;an”t;t(i:grl]led from outside the
nosi deef f ect s] PP '
#pragma i nterrupt func Defines the specified functionasan 34534 3-56
interrupt handler.
i) Pragmas which apply to statements Description Section Page
#pragma profile val ue Sets profiling information for a 3.45.4.1 3-56
statement.
#pragma | oop_count Specifies the minimum and 34542 357
(1 ower _bound, maximum limits for a loop, the loop
upper _bound, count dlv!der (2 or 4), and the use of
the remainder.
{2/ 4},
r emai nder)
j) Pragmas which apply to variables Description Section Page
#pragma align var_nane {4/8} Forces stricter alignment on an 3.455.1 3-59
object. Needed for paired moves.
#pragma align *var_nane {4/8} Indicates that the address of the 34551 359
variable referenced by a pointer is
aligned as specified.
SC100 C Compiler 3-53

Using the SC100 C Compiler

3.4.5.3 Pragmas which apply to functions

The pragmas in this category provide additional information about specific functions, and are defined in
the scope of the function to which they apply, directly after the “{” which marks the start of the scope.

3.4.5.3.1 Forcing or disabling function inlining

Inlining enables the compiler to improve optimization by replacing a function call by the entire function.
For very small functions, for example, wherethe overhead of the function call is greater than the size of the
function itself, this can be very efficient. For more information about function inlining, refer to Chapter 5,
“Optimization Techniques and Hints.”

You canuse#pragma i nline toforcethe compiler to inline a specific function, or #pr agnma
noi nl i ne to prevent the compiler from inlining a certain function. In the code segment shown in
Example 3-28, any calls to the function which follows #pr agma noi nl i ne will not be inlined.

Example 3-28. #pragma noinline

static int proc_30(int a)
{
#pragnma noi nl i ne

int tab_30[1000];

tab_30[0] = 4*a;
return(tab_30[0]);

3.4.5.3.2 Saving the entire context of the system

During normal processing, the compiler saves the contents of registers that have been changed, and any
other essential data. Y ou can force the compiler to save the entire context of the machine, including all
registersthat are used in this procedure, so that it can be restored if necessary to its previous state, at the
exact point at which the specific function started to execute.

Using #pr agma save_ct xt to save the entire system status can incur alarge overhead, and should only
be used where absolutely necessary.

The following exampleillustrates the use of #pr agma save_ct xt toforce the compiler to save the
complete machine context upon entry to the specified function.

Example 3-29. #pragma save_ctxt

voi d EntryPoint ()
{

#pragnma save_ct xt

3-54 SC100 C Compiler

Language Features

3.4.5.3.3 Defining a function as external

When the compiler encounters an unresolved function call, it assumes by default that thisisacall to an
external function that exists outside the application. The pragma#pr agna ext er nal enables you to:

e Confirm this assumption, by informing the compiler that the call isto an external function defined
outside the application

« Definethe function as an internal function that can be called from outside the application
The effect of the pragma depends on its placement, as described below:

» If#pragmaext er nal isspecifiedintheglobal scope, the compiler does not expect to find the body
of the function within the current application. The compiler uses standard calling conventionsto call
the function, and does not issue warnings for unresolved references. Specifying #pr agma
ext er nal inthe global scopeisvalid only with cross-file optimization.

« If #pr agma ext er nal is specified within the function scope, followed by the body of the defined
function, the compiler recognizes this as an internal function that can be called from outside the
application.

The following optional parameters can be specified with #pr agma ext er nal :

e Specify nanme = st ri ng to provide a specific function name, to override the default linkage name
allocated to the function.

« Defineconventi on = nunber to select the calling convention to be used instead of the default
standard convention. See Chapter 6, “Runtime Environment,” for further information about calling
conventions.

» Specify nosi deef f ect s if the function does not change any variable valuesin the application, and
can be moved or duplicated in other parts of the application without making any changes.

When nosi deef f ect s is specified, the compiler does not need to make worst case assumptions about
any possible impact that the function may have within the application.

In the first part of Example 3-30, pri nt f isdefined as an external function that does not exist within the
application, and that has no effect on any variablesin the application. In the second part of the example, the
function | CanBeCal | ed is defined inside the application and may be called by external function calls.
This function therefore has to obey the standard calling conventions.

Example 3-30. #pragma external

extern void printf();
#pragna external printf [nosideeffects]

voi d nai n()

printf("Hello there\n");

void | CanBeCal l ed(int X int Y)

{
#pragna external |CanBeCal |l ed [name ="xyz"]

SC100 C Compiler 3-55

Using the SC100 C Compiler

3.4.5.3.4 Defining a function as an interrupt handler
A function that operates as an interrupt handler differs from other functions in three basic respects:

e It must save and restore all resources that it uses, asit can be called at any time an interrupt occurs,
and cannot assume any conventions.

e ltrunsin“exception” mode, which forces the compiler to generate instructions that are slightly
different from the instructions issued in normal mode.

e |t cannot be passed parameters nor return avalue.

You can use#pragna i nt errupt todefineafunction asaninterrupt handler, as shown in the following
example.

Example 3-31. #pragma interrupt

voi d I ntHandl er ();

#pragna interrupt |ntHandl er
extern | ong Counter;

voi d | nt Handl er ()

{

Count er ++;

}

3.4.5.4 Pragmas which apply to statements
Pragmas which apply to statements are placed immediately before the relevant statement.

3.4.5.4.1 Specifying a profile value

By default, the profiler provided with the compiler enables it to make the necessary assumptions about the
number of times to execute a given statement. Y ou can specify #pr agma pr of i | e, followed by avalue
and immediately preceding a statement, to specify to the compiler the exact number of times that the
statement executes.

In Example 3-32, the value following #pr agma pr of i | e notifiesthe compiler that the loop executes only
10times. If #pr agma pr of i | e is not specified, the compiler assumes that, since thisis aloop with
dynamic bounds, the loop executes 25 times (the default). It isimportant to note that this assumption
affects the optimization of the program, and not its correctness.

Example 3-32. #pragma profile with constant value

#i ncl ude <pr ot ot ype. h>
int energy (short block[], int N

int i;
long int L tnp = O;
for (i =0; i <N i++)
#pragna profile 10
Ltnmp = L mac (L_tnp, block[i], block[i]);

return round (L_tnp);

3-56 SC100 C Compiler

Language Features

Withi f - t hen- el se constructs, #pr agma prof i | e can be used to inform the compiler which branch
executes more frequently, and the frequency ratio between the two branches, meaning the number of times
one branch executes in relation to the other.

In Example 3-33, thetwo #pr agma profil e statements havethe values5 and 50. These values notify
the compiler that the el se branch section executes 10 times more frequently than the first (implied t hen)
section. When used in thisway, the exact #pr agna profil e valuesare not significant, since they
indicate the frequency ratio, and not the absolute values. In this example, the values 1 and 10 would
convey the same information.

Example 3-33. #pragma profile with frequency ratio

#i ncl ude <pr ot ot ype. h>
int energy (short block[], int N

int i;
long int L tnp = O;

if (N>50)
#pragna profile 5
for (i =0; i <50; i++)
Ltnmp =L mac (L_tnp, block[i], block[i]);
el se
#pragna profile 50
for (i =0; i <N i++)
Ltnmp =L mac (L _tnp, block[i], block[i]);

return round (L_tnp);

3.4.5.4.2 Defining aloop count

The compiler triesto evaluate the number of times aloop iterates using the static information available. In
cases where this static information is not supplied to the compiler, if you know the upper and lower limits
of aloop, you can use#pr agma | oop_count to provide these values. Supplying such information, which
cannot always be discerned automatically by the compiler, enables generation of more efficient code.

Similarly, specifying adivider for the loop count enables the optimizer to unroll loops in the most efficient
way. The loop count can be divided by either 2 or 4, corresponding to the number of execution units. Y ou
can aso instruct the compiler whether to use the remainder, if there is one following division of the loop
count, to execute the loop an additional number of times.

The syntax of #pr agma | oop_count is:
#pragma | oop_count (Il ower_bound, upper_bound, [{2/4}, [reminder]])

Define avalue for lower_bound for the minimum number of times the loop will iterate, and a value for
upper _bound for the maximum number of times.

The divider parameter is optional. Only the values 2 or 4 may be specified as the divider.

To specify that aremainder should be used for the loop count, specify avalue for r emai nder . The
remai nder argument isonly valid if avalue has been specified for the divider.

SC100 C Compiler 3-57

Using the SC100 C Compiler

The pragma#pr agna | oop_count must be placed inside the loop to which it relates, and outside any
nested loops which the loop contains.

In Example 3-34, the loop will always iterate at least 4 times and at most 512 times. The iteration count
will always be divisible by 4. Asno remainder is specified, any remainder from the division will be
disregarded.

Example 3-34. #pragma loop count

void correlation2 (short vecl[], short vec2[], int N short *result)

{
long int L tnmp = O;
int i;
for (i =0; i <N i++)
#pragna | oop_count (4,512, 4)
Ltnmp =L mac (L _tnp, vecl[i], vec2[i]);

*result = round (L_tnp);

3-58 SC100 C Compiler

Language Features

3.4.5.5 Pragmas which apply to variables

These pragmas are placed immediately after the definition of the object(s) to which they refer. Objects
referred to by pragmas must first be explicitly defined.

3.4.5.5.1 Alignment of variables

Objects are usually aligned according to their size, as described in Section 3.4.2, “Types and Sizes.” The
default alignment for arrays is determined by their base type.

An array may need to be aligned to a specified value before it can be passed to an external function. The
pragma#pr agma al i gn can be used to force the alignment of arrays passed to an external function, to
meet the specific alignment requirements of the function.

To force the alignment of an array before passing it to an external function, specify #pragma al i gn,
followed by the defined array object, and either the value 4 for 4-byte (32-bit double word) alignment or
8 for 8-byte (64-hit quad word) alignment.

Certain instructions, such asnove. 2wand nove. 4w, which move wordsin pairs, may require alignment
to be applied that is stricter than the alignment defined for the data types involved.

In certain cases, the compiler cannot assess the alignment for dynamic objects and has to assume that the
objects have the alignment requirements for their base type. As aresult, the compiler cannot use the
multiword move instructions for these objects. By specifying the exact alignment for one or more objects,
you can enable the compiler to use these multiword moves and generate more efficient code.

Y ou can use the pragma#pr agma al i gn to provide the compiler with specific alignment information
about pointersto arrays, in order to enable the compiler to use multiword move instructions.

To inform the compiler that the address of an array is aligned as required for multiword moves, specify
#pragma al i gn, followed by the pointer to the array object, and either the value 4 for 4-byte alignment
or 8for 8-byte alignment. When using #pr agma al i gn in thisway, you should ensure that the object isin
fact aligned as required, since this form of the pragma does not force the alignment.

SC100 C Compiler 3-59

Using the SC100 C Compiler

In the first part of Example 3-35, array a isforced to 8-byte alignment before being passed to the external
function Ener gy. The second part of the example informs the compiler that both input vectors are aligned

to 32 bits. The instruction nove. 2f may be used here.

Example 3-35. #pragma align

#i ncl ude <pr ot ot ype. h>
short a[10];
#pragna align a 8

extern int Energy(short a[]);
int foo()

return Energy(a);

}
short Cor(short vecl[], short vec2[], int N
{

#pragna align *vecl 4
#pragna align *vec2 4

long int L tnp = O;
long int L tnp2 = 0;

int i;
for (i =0; i <N i +=2)
Ltnmp =L nmac(L tnp, vecl[i], vec2[i]);
L tnmp2 = L mac(L_tnp2, vecl[i+1], vec2[i+1]);
return round(L_tnp + L_tnp2);
}
3-60 SC100 C Compiler

Language Features

3.4.6 Predefined Macros

The compiler shell maintains a number of predefined macros, including standard C macros, and additional
macros which are specific to the SC100 C compiler and the SC100 architecture. Table 3-8 lists these

predefined macros.

Table 3-8. Predefined Macros

Macro Name

Description

__LINE__
__FILE__
__DATE__
_TIME__
__STDC__

__STDC VERSI ON__
__SIGNED_CHARS
__VERSION__
_ENTERPRI SE_C_

Bl G_ENDI AN

LI TTLE_ENDI AN
SC100

SC110
SC140

The line number of the current source line.

The name of the current source file.

The compilation date, as a character string in the form Mmm dd yyyy e.g. Jan 23 1999.
The compilation time, as a character string in the form hh:mm:ss.t

Decimal constant 1, indicating ANSI conformance.

Defined in ANSI C mode as 199409L.

Defined when char is signed by default

The version number of the compiler, as a character string in the form nn.nn.

Defined for use with the Enterprise compiler. If your source file may be compiled with
other compilers apart from the Enterprise, this macro should be included in a conditional
statement to ensure that the appropriate commands are activated, for example:

#i fdef _ENTERPRI SE_C_

(Enterprise-specific commands)

#el se

#endi f
The most significant bits in the lower address.
The least significant bits in the lower address.

Defined for use with all compilers based on the SC100 architecture. If your source file
may be compiled with other compilers apart from those based on the SC100 architecture,
this macro should be included in a conditional statement to ensure that the appropriate
commands are activated, as shown in the following example:

#i fdef _SC100_

(SC100- speci fi c commands)

#el se

#endi f
The architecture variant, which specifies the number of MAC units to be used by the
compiler:

SC110 indicates 1 MAC unit.
SC140 indicates 4 MAC units.

Only one of these macros is valid for each invocation of the compiler. The macro that is
selected, and the value of the architecture variant, are determined by the value set for the
- ar ch option when the compiler is invoked. If no value is specified for - ar ch, the default
is SC140 (_SC140_) .

See Section 3.3.8.1, “Defining the architecture,” for further information about the
-arch option.

SC100 C Compiler

3-61

Using the SC100 C Compiler

3-62 SC100 C Compiler

Chapter 4
Interfacing C and Assembly Code

The SC100 C compiler supports interfacing between C source code and assembly code, enabling accessto
functionality not provided by C. This chapter describes the features of this interface and provides
instructions, guidelines, and examples.

The following sections are contained in this chapter:

4.1

Section 4.1, “Inlining a Single Assembly Instruction,” explains how to use an individual assembly
instructions in your C source code.

Section 4.2, “Inlining a Sequence of Assembly Instructions,” describes how to embed an assembly
function consisting of a sequence of assembly instructions into your C code.

Section 4.3, “ Calling an Assembly Function in a Separate File,” explains how an assembly function
that is contained in a separate file can be used in conjunction with your C source files.

Section 4.4, “Including Offset Labelsin the Output File,” describes the use of symbolic offsets for
C data structures in the assembly output file.

Inlining a Single Assembly Instruction

A single assembly instruction can be inlined in a sequence of C statements and compiled by the compiler.
To ensure successful compilation of an inlined assembly instruction, note the following guidelines:

The compiler passes an inlined instruction to the assembly output filein text form, and therefore has
no knowledge of the contents or side effects of the instruction. It isimportant that you ensure that
there is no risk of the instruction affecting the C and/or assembly environment and producing
unpredictable results. For example, do not use aninlined assembly instruction to change the contents
of registers, asthe compiler has no knowledge of such changes. Similarly, do not include any jumps
or labels, which access the C code and may affect the correctness of the tracking algorithms.

The compiler ignores inlined assembly code instructions.

Since the compiler treats the assembly instruction as a string of text, it cannot perform any error
checking on the instruction. Check the syntax and text of the instruction carefully prior to
compilation. Errorsin assembly code are identified only at the assembly stage of the compilation
process.

A singleinlined assembly instruction cannot reference a C object. The only way to reference a
C object in assembly code is by inlining a sequence of assembly instructions, as described in
Section 4.2, “Inlining a Sequence of Assembly Instructions.”

SC100 C Compiler 4-1

Interfacing C and Assembly Code

Toinlineasingle assembly instruction, use the asmstatement. The syntax is asfor astandard function call,
with one argument enclosed in double quotation marks, as shown below in Example 4-1.

Example 4-1. Inlining a single assembly instruction
asn("wait");

4.2 Inlining a Sequence of Assembly Instructions

It is possibleto use assembly code that references C objects, by defining a separate function that consists of
a sequence of assembly instructions, and inlining thisin your C code. Such afunction isimplemented
entirely in assembly and may not include C statements, but can accept parameters referenced by the
assembly code.

4.2.1 Guidelines for Inlining Assembly Code Sequences

Thefollowing guidelines are similar to those for the inlining of individual assembly instructions, described
in Section 4.1, “Inlining a Single Assembly Instruction,” and apply also to the use of inlined sequences of
assembly code:

« Thecompiler passes a sequence of inlined instructionsto the assembly output file asastring of text,
and therefore has no knowledge of the contents or side effects of theinstructions. It isimportant that
you ensure that the assembly function does not affect the C and/or assembly environment and does
not produce unpredictable results. For example, do not use inlined assembly instructions to change
the contents of registers, and do not alter the sequence of C code instructions by specifying jumps,
as the compiler has no knowledge of such changes.

« Theoptimizer cannot use functions based on inlined sequences of assembly code; thus, they are
ignored during optimization. Avoid using assembly-based functionsif aC alternativeisavailable, in
order to ensure maximum optimization of the code.

e Thecompiler performs no error checking on the sequence of assembly instructions. Assembly code
errors are identified only at the assembly stage of the compilation process.

« By definition, inline assembly functions are static and declare no external linkage; therefore, you
must call inline assembly functions from within the same modul e that they are declared.

The following guidelines apply specifically to the use of inlined sequences of assembly code for asm
functions:

* When passing parameters to an inlined sequence of assembly instructions, registers are not
automatically allocated. For each parameter, you must specify the register in which the parameter
enters or exits the function. There is no need to save and restore the registers before and after the
function.

e The compiler cannot deduce whether an inlined function is likely to affect the application, for
example, if it modifies global variables. It isimportant that you provide the compiler with such
information if there is a possibility that the function may have any side effects.

e Afunctionthatisinitially defined as stand-alone may in certain circumstances beincluded in another
sequence of instructions. Therefore, inlined functions should not use statements such as RTS. If the
function is used in a sequence of instructions, the compiler automatically adds the necessary return
statements.

4-2 SC100 C Compiler

Inlining a Sequence of Assembly Instructions

e The compiler does not automatically allocate local variables for assembly functionsto use. If a
function requires the use of local variables, you must alocate these variables specifically on the
stack or define them as static variables.

» Assembly functions defined as asequence of instructions can access global variablesin the C source
code, since these are static by definition.

4.2.2 Defining an Inlined Sequence of Assembly Instructions

When defining a sequence of inlined assembly instructions:

« define the header for the function before the body of the instructions, and
» gpecify the registers that each parameter will use.

Y ou can define alist of read parameters, alist of write parameters, and/or alist of modified registers, as
appropriate.

The syntax for inlining a sequence of assembly instructionsis as follows:

asm <f unc prot ot ype>

{

asm header
optional arg binding
optional return val ue
optional read |ist
optional wite list
optional nodified reg list

asm body
<asm code>

asm end

}

optional arg bindi ng
.arg

<ident> in <reg>;
<ident> in <reg>,

optional return val ue
return in <reg>

optional read list:
.read <ident>, <ident>,...

optional wite list:
.wite <ident> <ident>,...

optional nodified reg list:
.reg <reg>, <reg>, ...;

The following syntax conventions apply:

e ldentifiers must have the prefix _ (underscore).
* Registers must have the prefix $ (dollar sign).
e Labels must have the suffix . (period).

SC100 C Compiler 4-3

Interfacing C and Assembly Code

Example 4-2 shows the syntax for an inlined assembly function that takes two arguments as input
parameters and returns one value. Thefirst argument is passed in the register d0, and the second parameter
ispassed in the register r 1. Theresult isreturned in dO.

Example 4-2. Inlining syntax

asmint t6(int paraml, int *paran®)

asm header
.arg
_parand in $do;
_paran2 in $ri;
return in $do;
.reg $do, $d1, $r1;
asm body
nove. |l (rl),dl
add do, d1, do
asm end

}

In Example 4-3, the function t 6 accepts two parameters, an integer p1 passed inregister d14, and a
pointer p2 passed inr 7. The result of the function is returned in d14.

Example 4-3. Simple inlined assembly function

#i ncl ude <stdio. h>
int A10] ={1,2,3,4,5,6,7,8,9,0};
asmint t6(int pl, int *p2)

asm header

.arg
_pl in $di4;
_p2in $r7;

return in $di4;
.reg $d14, $d1, $r7;
asm body
nove. |l (r7),dl
add d14,d1, d14
asm end

int main()

int kK =8;
int s;

s = t6(k, & 3]);
printf("S= %\n",s);

return s;

}

4-4 SC100 C Compiler

Inlining a Sequence of Assembly Instructions

Example 4-4 shows the use of labels and hardware loops within inlined assembly functions. Y ou should
use hardware loops within assembly functions only if you know that the loop nesting islegal. In this
example, the function is called from outside a loop, and the use of hardware loops is therefore allowed.

Example 4-4. Inlined assembly function with labels and hardware loops

#i ncl ude <stdi o. h>
char sanple[10] ={9,6,7,1,0,5,1,8, 2, 6};
int status;

asm char t7(int p)
{
asm header
.arg
_p in $d7;
return in $ds;
.reg $d7, $d8, $r1;
asm body
clr d8
nove.| # sanple, rl
doen3 d7
dosetup3 _L10

| oopstart3
_L10: nove.b (rl1),d1

add d8, d1, d8

inc di

nmove. b di, (rl1)+

| oopend3

asm end

}
int main()

int n¥8;

int s,i;

for(i=0;i < 10;i++)

{
sanpl e[i] *= 2;
printf("% ", sanple[i]);

}
printf("\n");

s = (int)t7(m;
printf("S= %\n",s);

for(i=0;i < 10;i ++)
printf("%l ",sanple[i]);

printf("\n");

return 1;

SC100 C Compiler 4-5

Interfacing C and Assembly Code

Example 4-5 shows how global variables are referenced within an inlined assembly function. Global
variables are accessed using their linkage name, which is by default the variable name prefixed by the
character _ (underscore). The variablesvect or 1 and vect or 2 are therefore accessed within the function

as_vector1land_vect or 2 respectively.

Example 4-5. Referencing global variables in an inlined assembly function

#i ncl ude <stdi o. h>

short vectorl[] ={1,2,3,4,56,7,8,9,10, 11, 12, 13, 14, 15};
int vector2[] = {11, 12,13, 14, 15, 16, 17,18, 19,1, 2, 3, 4, 5, 6};

short result 1=0;
int result 2=0;

asmvoid test(int n, short *rl,int *r2)

asm header
.arg
n in $r1
rlin $r3;
r2in $r7,
.reg $do, $r1, $r6, $r1l, $r3, $r7;
asm body
nove. | # vectorl, r6
nove. | # vector2,rll
addl 1a rl1,r6
addl 2a ri, ril
nove. w (r6), do
asrr #<2, dO
nove. w do, (r3) nove. | (r11),d1
asl di, d2
nove. | d2, (r7)
asm end
}

int mai n(voi d)

test (12, & esult_1,&esult_2);

printf("Status = % %\ n", (int)result_1,

return (int)result_2;

result _2);

4-6

SC100 C Compiler

Calling an Assembly Function in a Separate File

4.3 Calling an Assembly Function in a Separate File

The compiler supports callsto assembly functions that are contained in separate files, and enables you to
integrate these files with your C application.

To include acall to an assembly function in your program, follow the steps described below:

1. Write the assembly function in a separate file from your C source files. Use the standard
calling conventions, as described in Chapter 6, “ Runtime Environment.”

2. Assemblethefile, if required. This step isoptional.
3. Inyour C sourcefile, define the assembly function as an external function.

4. Specify both the C source file and the assembly file asinput filesin the shell command line
to integrate the files during compilation.

The following examples show how a segment of C code calls afunction that performs an FFT algorithm
implemented in assembly.

4.3.1 Writing the Assembly Code
Example 4-6 shows the assembly code for the FFT algorithm, inthefilefft. sl .

Example 4-6. Assembly function in a separate file

extern void fft(short *, short*);
; Paraneters: pointer to input buffer in r0
pointer to output buffer inrl

Cfft:
push d6 push d7 ; Save and restore d6, d7, r6, r7, according to push r6 push r7
;cal ling conventions.

i npl erent ati on of FFT al gorithm >

pop r6 pop r7
pop d6 pop d7
rts

SC100 C Compiler 4-7

Interfacing C and Assembly Code

4.3.2 Calling the Assembly Function

The C code that calls the FFT function is shown in Example 4-7. This source code is saved in the file
test fft.c.

Example 4-7. C code calling assembly function

#i ncl ude <stdio. h>
extern void fft(short *, short*);
#pragna external fft

short in_bl ock[512];
short out bl ock[512];
int in_block Iength, out block |ength;

voi d nai n()

int i;

FI LE *fp;

int status;

i n_bl ock_| engt h=512;

out bl ock_| engt h=512;

fp=fopen("in.dat","rb");

if(fp==0)

{
printf("Can't open parareter file: input_file.dat\n");
exit(-1);

printf("Processing function fft \n");

while ((status=fread(in_bl ock, sizeof(short), in_block Ilength, fp)) ==
i n_bl ock_| engt h)

fft(in_block, out bl ock);

4.3.3 Integrating the C and Assembly Files

Example 4-8 shows how the two input files are specified in the shell command line:

Example 4-8. Integrating C and assembly files
scc -0 test fft.eld test fft.c fft.sl

4-8 SC100 C Compiler

Including Offset Labels in the Output File

4.4 Including Offset Labels in the Output File

In some cases when assembly functions are called, data structures need to be shared between the C source
code and the assembly code. In the following example, the layout of the structure conpl ex needsto be
used by the assembly code.

Example 4-9. Data structure shared between C and assembly

struct conpl ex

{

short r;
short i;

1

struct conpl ex CVECl, CVEQ;
vol atile struct conpl ex res;

voi d nai n()

cnpy (& CVECL, &CVEQR2, &res);

The - do option in the shell command line instructs the compiler to include the details of C data structures
in the output assembly file. Y ou can specify this as an additional option in the command line, as shown in
Example 4-10:

Example 4-10. Specifying the output of offset information

scc -0 test.eld test.c cnmpy.sl -do

When the - do option is specified, the output file shows the offsets for all field definitionsin each data
structure defined in the C source code. The symbolic label is composed of:
<nodul e name>_<structure name>_<fiel d name>, asshown in the following example:

Example 4-11. Data structure offsets in the assembly output file

test _complex_r equ 0
test _conpl ex_i equ 2

SC100 C Compiler 4-9

Interfacing C and Assembly Code

The symbolic labelsin the output file can be used in the assembly code, making the code more readable, as
illustrated in Example 4-12. Using these symbolic labels also makes maintenance of the assembly code

easier when changes are made to the C code.

Example 4-12. Using symbolic offsets in assembly code

; Function cnpy

Par arret er x passed in r0
Par arreter y passed in rl
Par arret er result passed in (sp-12)

section. txt

gl obal _cnpy
align 2

_cnpy [
nove. 2f (r0), dO: d1

nmove. 2f (r1),d2:d3
]

[

npy do, d2, d5

npy do, d3, d7

[

]

macr -d1,d3,d5
nacr dil,d2, d7
nove. |l (sp-12),r2
]

rtsd
nmoves. f d5, (r2+test_conpl ex_r)

endsec

d7, (r2+test _conpl ex_i)

4-10

SC100 C Compiler

Chapter 5
Optimization Techniques and Hints

This chapter explains how the SC100 optimizer operates, and describes the optimization levels and
individual optimizations which can be applied. The following sections are included in this chapter:

Section 5.1, “Optimizer Overview,” provides a general description of the optimizer, illustrates how
the optimizer transforms code, and outlines the available optimization levels, modes and options.

Section 5.2, “Using the Optimizer,” explains how to invoke the optimizer, and how to achieve the
required results for your application.

Section 5.3, “Optimization Types and Functions,” describes the individual optimizationsin detail.

Section 5.4, “ Guidelinesfor Using the Optimizer,” provides advice on waysto write source codethat
can make the best use of the optimizer’s capahilities.

Section 5.5, “ Optimizer Assumptions,” describesthe assumptions made by the optimizer in different
circumstances.

SC100 C Compiler 5-1

Optimization Techniques and Hints

5.1 Optimizer Overview

The SC100 optimizer converts preprocessed source files into assembly output code, applying arange of
code transformations which can significantly improve the efficiency of the executable program. The goal
of the optimizer isto produce output code which is functionally equivalent to the original source code,
while improving its performance in terms of execution time and/or code size.

5.1.1 Basic Blocks

The majority of the code transformations operate on basic blocks of code. A basic block of codeisalinear
seguence of instructions for which there is only one entry point and one exit point. There are no branches
in abasic block. In general, bigger basic blocks enable better optimization, since the scope for further
optimization is increased.

5-2 SC100 C Compiler

Optimizer Overview

5.1.2 Linear and Parallelized Code

The optimizer can produce code that takes full advantage of the multiple execution units provided by the
SC100 architecture.

Executable programs process instructions in the form of execution sets, with one execution set per cycle.
The optimizer can increase the number of instructions in an execution set, enabling two or more execution
units to process instructions in parallel, in the same cycle. In thisway, linear code is transformed into
paralelized code:

e Linear code uses only one execution unit, regardless of the number of units available. Each
execution set consists of one instruction only.

» Parallelized code execution sets can comprise multipleinstructions which execute in parallel using
the available number of execution units. Parallelized code executes faster and more efficiently than
linear code.

Figure 5-1 illustrates the transformation of linear code, comprising a series of single instruction execution
sets, into parallelized code, which consists of execution sets containing one or more instructions each:

LINEAR CODE PARALLELIZED CODE

Instruction Instructions

Execution set 1

Execution set 2

Execution set 3

Execution set 4

. B |
. D | -
Execution set 5 ‘ [L

<.__

\Z

Figure 5-1. Linear and Parallelized Code

Dependencies between instructions can restrict the level of parallelization that the optimizer can achieve.
For moreinformation, see Section 5.3.1, “ Dependencies and Parallelization,” and Section 5.4, “ Guidelines
for Using the Optimizer.”

SC100 C Compiler 5-3

Optimization Techniques and Hints

5.1.3 Optimization Levels and Options

Three basic optimization levels are provided, all of which maintain a balance between code density and

speed:

Table 5-1. Optimization Levels

Optimization Levels

Description

Level O compiles the fastest and produces the slowest
output as linear code. Level 0 produces unoptimized
code.

Level 1 takes longer to compile, applies target-independent
optimizations, and produces optimized linear code.

Level 2 (the default) compiles more slowly than Level 1,

applies all target-independent optimizations, as well
as all target-specific optimizations, and can produce
faster, parallelized code

Select only one of the above optimization levels for each compilation.

Two supplemental optimizations are available that you can combine with Level 1 or Level 2 optimization:

Space optimization enables you to apply the indicated level of optimization, while weighting the
optimization processin favor of program size. Programs or modul es optimized for space require a
smaller amount of memory but may sacrifice program speed.

Cross-file optimization is a complex process, which requires significantly more compilation time
than non-cross file optimization. With cross-file optimization, the optimizer applies the required
level of optimization across all the filesin the application at the same time, and as a result produces

the most efficient program code.

Cross-file optimization is generally applied at the end of the development cycle, after all sourcefiles
are compiled and optimized individually or in groups. By default, the optimizer operates without

cross-file optimization.

5-4

SC100 C Compiler

Optimizer Overview

Table 5-2 below summarizes the optimization options. Thistable also includes a cross-reference to the
sections containing detailed descriptions of the individual optimizations applied by each of the options.

Table 5-2. Optimization Options Summary

Option Description Benefits Section Page
-0 < Disables all optimizations. ¢ Compiles fastest.
(Level 0) ¢ Outputs non-optimized, linear assembly * Generates assembly code which
code. correlates clearly with the C source
code, and can assist debugging.
- OL « Performs all target-independent « Compiles faster than option - O2 5.3.2 5-9
(Level 1) (non-parallelized) optimizations, such as (the default).
function inlining. « Produces faster programs than
* Omits all target-specific optimization option - Q0.
steps.
« Outputs optimized, linear code.
-2 « Performs all optimizations. « Takes advantage of parallel 5.3.3 5-20
(Level 2) - Outputs optimized, non-linear assembly execution units, producing the
(Default) code. highest performance code possible
without cross-file optimization.
-Gs « Performs the indicated level of « Produces optimized assembly code 534 533
Space optimization, with emphasis on reducing which is small.
Optimization code size.
¢ Can be specified together with any of the
other optimization options except - Q0.
- &g _ « Performs cross-file optimization. « Takes advantage of the visibility of 535 5-35
Cross-file . can pe specified together with any of the all input files to implement the
Optimization ipo; optimization options except - C0. specified optimization level across
» Produces the most efficient results when the entire application.)
specified together with the - C2 (default) « Produces the fastest runtime code.
option.
« Compiles significantly slower than the
other options.
-NO_OVer . Tels the compiler that the application - Generates more efficient code 651 6-25
flow does not rely on the ANSI/ISO C defined sequences.
overflow behavior of operations on « Results in smaller code size.
unsigned integral data-types. « Produces faster runtime code.
SC100 C Compiler 5-5

Optimization Techniques and Hints

5.2 Using the Optimizer

By default, the compiler optimizes all source code files using Level 2 optimization without cross-file
optimization. Y ou can choose to optimize your source code at the level that you require at each stage of
program devel opment, and you can optimize individual sections of the program according to their purpose
in the application. For example, you may wish to prepare your application as follows:

e Duringinitial development stages: Use the default Level 2 optimization to compile your source
code files, individually or in groups. If required, optimize certain sections of the application for
maximum speed, and optimize other sections for size, to reduce the memory space they occupy.

e Duringfinal development stages: Select Level 2 and cross-file optimization, in order to apply all
optimizations across the entire application. The compilation is slower, but produces the most
effective optimization results.

Y ou select the optimization level and mode to be applied by specifying one or more options in the shell
command line, as described below in Section 5.2.1, “Invoking the Optimizer.”

5.2.1 Invoking the Optimizer

The optimizer can be invoked by including the required option(s) in the shell command line or command
file, asillustrated in the examples that follow. For more detailed information about the use and syntax of
the shell command line, refer to Section 3.2, “Invoking the Shell,” on page 3-9.

The command line shown in Example 5-1 invokes the optimizer with one input source file, and the default
optimization settings. The optimizer applies Level 2 optimizations without cross-file optimization.

Example 5-1. Invoking the optimizer with default settings

scc -o file.eld file.c

Example 5-2 shows how to invoke the optimizer with the Level 1 option, to apply target-independent
optimizations only. The optimizer operates without cross-file optimization.

Example 5-2. Invoking the optimizer for target-independent optimizations only

scc -0O1L -o file.eld file.c

The command line shown in Example 5-3 invokes the optimizer in cross-file optimization mode. The
optimizer processes all the specified source files together, applying the default Level 2 optimizationsto all
the modules in the application.

Example 5-3. Invoking the optimizer with cross-file optimization
scc -Qg -o file.eld filel.c file2.c file3.c

5-6 SC100 C Compiler

Using the Optimizer

5.2.2 Optimizing for Space

Y our application, or specific parts of it, may require code that occupies the least possible space in memory.
Y ou can optimize the file(s) for space at the expense of program speed.

To activate space optimization, specify the - s option in the shell command line. See Section 5.3.4,
“Space Optimizations,” for details of the optimization functions for this option.

The - s option generates the smallest code sizefor the given optimization level. If no optimization level is
specified with - Gs, the - Q2 optimization level is selected by default. All optimizations associated with the
given optimization level are applied, except those noted in Section 5.3.4, “ Space Optimizations,” with the
emphasis on functions which reduce code size.

Depending on your application, the best code density might be achieved using - Og and - Gs together
along with the appropriate memory model switch for your application. See Section 6.2, “Memory
Models,” on page 6-5 for details about the memory models.

5.2.3 Using Cross-File Optimization

Once you have optimized your individual source files and groups of files, you can invoke the optimizer in
cross-file mode to ensure maximum optimization across the entire application, in order to produce the most
efficient code.

With cross-file optimization, all the code in the application is processed by the compiler at the same time.
The optimizer has no need to make worst case assumptions since all the necessary information isavailable.
This enables the optimizer to achieve an extremely powerful level of optimization.

Compiling with cross-file optimization entails high consumption of required resources, and has a slow
compilation time. In addition, because of the interdependency that cross-file optimization creates between
al segments of the application, the entire application needsto be recompiled if any one source codefileis
changed. For these reasons, cross-file optimization is generally used at the final stage of development.

To receive optimal results using cross-file optimization, follow these rules:

1. You must compile the entire application together.
2. You can only link the Standard C library that is shipped with the Compiler.
3. Assembly functions can only call other assembly functions and library functions

For a graphic representation of how the compiler operates with and without cross-file optimization, see
Section 3.2, “Invoking the Shell,” on page 3-9.

To activate cross-file optimization, specify the - Qg option in the shell command line, as shown in
Example 5-3 on page 5-6. While you can specify this option together with any of the other optimization
level options, cross-file optimization is generally recommended with optimization Level 2. The- O2 option
is the default and may be omitted.

SC100 C Compiler 5-7

Optimization Techniques and Hints

5.3 Optimization Types and Functions

The optimizer implements two main types of optimization:

« Target-independent optimizations improve the output code without taking into account the
properties of the target machine. These optimizations are described in detail in Section 5.3.2,
“Target-Independent Optimizations.”

« Target-specific optimizations achieve code improvements by exploiting the architecture features of
the target machine. Section 5.3.3, “Target-Specific Optimizations,” provides a description of these
optimizations.

Both sets of optimizations can be applied to individual files and groups of files, with or without cross-file
optimization. Refer to Section 5.2.3, “Using Cross-File Optimization,” and Section 5.3.5, “ Cross-File
Optimizations,” for more information.

Changesin the code as aresult of one optimization may enable another optimization to be applied,
producing an accumulative effect.

5.3.1 Dependencies and Parallelization

Dependency between instructions directly limits how successfully the optimizer can apply the various
optimizations. An instruction is considered to be dependent on another if a change in their order of
execution influences the result of the operation.

The optimizer can group instructions into parallelized execution sets only if these instructions do not
contain dependencies. For a description of parallelized execution sets, refer to Section 5.1.2, “Linear and
Parallelized Code.” Paralldization of different parts of the program, or of iterations of the same loop, can
significantly increase the speed of the executable application.

Example 5-4 illustrates a ssimple dependency between two instructions. The value of d0 isentirely
different when the order of these instructionsis reversed. These instructions cannot be executed in parallel.

Example 5-4. Simple instruction dependency

nove.w #5,d0 ; Sets register dO to 5
add do, di, d2 ; Adds the values in dO and d1 into register d2

An example of dependency arising from an algorithm is shown in Example 5-5. The value of the variable
sum must be calculated before it can be used in the L_nmac instruction.
Example 5-5. Algorithm instruction dependency

sum = npy(a, b);
result = L _mac(sumc,d);

The optimizer can operate most effectively with code which contains as few dependencies as possible.
Section 5.4, “Guidelines for Using the Optimizer,” provides more detailed advice for writing code that
avoids dependencies and makes the best use of the optimizations.

The sections that follow describe the operation of individual optimizationsin detail, and are intended for
advanced users of the SC100 C compiler. If you do not require this level of detail, you may wish to skip
these sections, and turn directly to Section 5.4, “Guidelines for Using the Optimizer.”

5-8 SC100 C Compiler

Optimization Types and Functions

5.3.2 Target-Independent Optimizations

In the high-level optimization phase, a number of general, target-independent optimizations are

implemented. All target-independent optimizations are applied when either optimization Level 1

(option - O1) or the default optimization Level 2 (option - O2) is selected.

These target-independent optimizations are summarized in Table 5-3, and examples of each are givenin

the sections that follow.

For adetailed discussion of the principles behind target-independent optimizations, refer to Compilers
Principles, Techniques, and Tools, by Aho, Sethi, and Uliman.

Table 5-3. Summary of Target-Independent Optimizations

Optimization Description Section Page

Target-Independent Strength reduction Transforms array access patterns and induction 5.3.2.1 5-10

(loop transformations) variables in loops, and replaces them with pointer
accesses

Function inlining Substitutes a function call with the code of the 5.3.2.2 5-16
function

Common subexpression elimination Replaces an expression with its value if it occurs 5.3.2.3 5-17
more than once

Loop invariant code Moves code outside a loop if its value is unchanged 53.2.4 5-17
by the loop

Constant folding and propagation Calculates the value of an expression at 5325 5-18
compilation time if it contains known static
constants

Jump-to-jump elimination Combines jump instructions 5.3.2.6 5-19

Dead code elimination Removes code that is never executed 5.3.2.7 5-19

Dead storage/assignment elimination Removes redundant variables and value 5.3.2.8 5-19
assignments

The output from the target-independent optimizationsisin the form of linear assembly code.

SC100 C Compiler 5-9

Optimization Techniques and Hints

5.3.2.1 Target-Independent Strength reduction (loop transformations)

The purpose of strength reduction is to increase the effectiveness of the code by transforming operations
which are “expensive’ in terms of resources, into less expensive, linear operations. For example, addition
and subtraction are linear functions which require | ess operation cycles than multiplication and division.

When an address cal culation that contains multiplication is replaced by one containing addition, the
amount of resources required by the code is significantly reduced, since addition can be implemented using
the complex addressing mode of the Address Generation Unit (AGU). When the multiplication appears
within aloop, the benefit of the replacement is further increased.

The strength reduction optimization identifies and transforms induction variables, meaning variables
whose successive values form an arithmetic progression, usually within aloop. An example of an
induction variable is a subscript which points to the addresses of array elements, and increases with each
iteration of the loop. The computation of such a variable can be moved to a position outside the loop to
avoid repeated operations, and/or transformed for use with linear operations.

Simple and complex loops and array access patterns are transformed where possible into simpler, linear
forms, as described in the sections that follow.

5.3.2.1.1 Simple loops

Example 5-6 shows the generated pseudocode and output assembly code for asimple loop which
initializes an array. The loop structure is static, meaning that its induction variables, the [oop counteri and
the array offset t 1, both increase by increments of known constant val ues.

Example 5-6. Loop transformation - simple loop

C source code
int tabl e[100];

step = 1,

for(i=0; i<100; i+=step)
table[i] = O;

Pseudocode before optimization Pseudocode after optimization
i =0; i =0;

L1 tl =i * 4 tl =i * 4
table[tl] = O; L1 table[tl] = O;
i ++; tl =tl1 + 4
i f(i<100) goto L1 i ++;

i f(i<100) goto L1
Assembly code output

nove.|l # table,r0O clr d2
| oopstart3

nove. |l d2,(r0)+
| oopend3

Before optimization, the calculation of the value of t 1 iswithin the loop, and isincremented by
multiplication. After optimization, the initial value of t 1 is set outside the loop, and itsvalueis
incremented inside the loop by addition. The resulting values are identical for both forms, but in the
optimized version the resource overhead is considerably lower.

5-10 SC100 C Compiler

Optimization Types and Functions

The same principles also apply to more complex loop structures and array access patterns, as described in
the sections that follow:

Dynamic loops, in which increments are based on a variable whose value is not known at
compilation time

Multi-step loops, in which the loop iterator increments more than once in each iteration of the loop

Composed variable loops, in which one or more variables or iterators are linked to each other in a
linear relationship

Square loops, which access elementsin atwo-dimensional array asin a matrix, on arow-by-row
basis

Triangular loops, which are similar to square loops, but which access each row in the matrix from
an incremented starting position in each subsequent row

5.3.2.1.2 Dynamic loops

In adynamic loop, one or more increments are based on variables whose va ues are not known at
compilation time.

Example 5-7 shows the generated code for adynamic loop in which the value of the loop increment and its
upper limit are not known at the time of compilation. The optimization removes the initial multiplication
instruction from the body of the loop, and inside the loop the multiplication increment instruction is
replaced by an addition instruction.

Example 5-7. Loop transformation - dynamic loop

C source code

step = step_table[1];
for(i=0; i<MAX i+=step)

table[i] = 0;
Pseudocode before optimization Pseudocode after optimization
step = step_tabl e[1]; i =0;
i =0; step = step_tabl e[1];
L1 t1 =i * 2 t1 =i * 2
table[tl] = 0O t2 = step * 2;
i =i + step; L1 table[tl] = 0;
if(i<MAX) goto L1 t1 =tl1 +1t2

Assembly code output

i =i + step;
if(i<MAX) goto L1

L2

clr d3 add di, do, d1
nmove. | d3,(r1) cnpge. w #100, d1
adda r2,r1

if L2

SC100 C Compiler 5-11

Optimization Techniques and Hints

5.3.2.1.3 Multi-step loops

Loops in which the loop iterator increments more than once in each iteration of the loop are defined as

multi-step loops.

In the multi-step loop shown in Example 5-8, the loop iterator i increments twice within the loop. In this
case, i istransformed into an induction variable which increments in linear progression in three stages.

Example 5-8. Loop transformation - multi-step loop

C source code

int table[10];
for(i=0; i<10; i++)

table[i] =1i;
i ++;
tabl e[i]

0;

Pseudocode before optimization

Pseudocode after optimization

i =0; i =0;

L1 tl =i * 2 tl =i * 2
table[tl] =i; t2 =i * 2+ 2
=i+ t3 =1i;
t2 =i * 2 Repeat 10 tines:
table[t2] =i; table[tl] = t3;
i=i + 1 table[t2] = O;
i f(i<10) goto L1 t1 =t1 + 4

t2 =12 + 4
t3 =13 + 2;

Assembly code output
| oopstart3

L93
nove. | do, (r0) +n3 #<2,d0
nmove. | d2, (r1)+n3
| oopend3

5-12 SC100 C Compiler

Optimization Types and Functions

5.3.2.1.4 Composed variable loops

A composed variable loop incorporates one or more variables or iterators which have alinear relationship
between them. The loop transformation optimizes such loops by moving the multiplication instruction to a
position outside the loop, and by substituting one of the variables with a constant.

This optimization can be applied only when the variables are linked by linear arithmetic functions,
meaning those cal culations involving addition or subtraction of the variables, or multiplication of a
variable by a constant. Functions which include non-linear operations, such as multiplication of two
induction variables, cannot be optimized in thisway.

Example 5-9 illustrates the generated code for a composed variables loop. In this example theincrement is
the result of alinear calculation using the two induction variablesi andj .

Example 5-9. Loop transformation - composed variables

C source code

int tabl e[100];
for(i=0, j=0; i<10; i++4)

{
table[10 * i +] =1i;
j+

}

Pseudocode before optimization Pseudocode after optimization
=0 i =0 j =0
j =0; tl =1* 10;
tl =i * 10; t2 =tl +j;

L1 t2 =t1 +j; t3 =t2* 2
t3 =t2* 2; /* address */ Repeat 10 tines:
table[t3] =i; table[t3] =i;
=i+ i =i + 1
t1 =t1 + 10; t3 =13 + 22;

=i+ 1
if(j <10) goto L1
Assembly code output

| oopstart3

L93
nmove. | do, (r0)+n3 inc do
| oopend3

5.3.2.1.5 Square loops

A sguare loop isatwo-dimensional array access pattern which is similar to amatrix in which cells are
accessed horizontally in rows, starting at the first cell in each row.

The code that isinitially generated for a square loop uses a doubly-nested loop with two induction
variables. These variables are incremented by multiplication, as the loop progresses through the array
elementsin each row, and at the start of each new row, as shown in Figure 5-2.

SC100 C Compiler 5-13

Optimization Techniques and Hints

Figure 5-2. Square Loop

The loop transformation changes such atwo-dimensional array into one row containing all the elementsin
one straight string. The multiplication instructions are replaced by additions, as the progression can now be
performed on alinear basis. An example of the transformation of a square loop is shown below in
Example 5-10.

Example 5-10. Loop transformation - square loop

C source code

int table[70][70];
int i, j;
for(i=0; i<35; i++)
for(j=0; j<70; j++)
c+=table[i]l[j];

Pseudocode before optimization Pseudocode after optimization
i =0; tmpl = O;
L1 j =0; Repeat 35 times
L2 tmpl =i * 140; tmp2 = table + tnpl;
tmp2 = * 2; /* row base address */
tmp3 = tnpl + tnp2; Repeat 70 tines
tnmpd = tabl e[tnmp3]; tmp3 = *tnp2;
C = C + tnp4; /* pointer to cell */
j + C =cC + tnp3;
if(j <70) goto L2 tnp2 = tnp2 + 2;
i ++; tmpl = tnpl + 140;
i f(i<35) goto L1 /[* next matrix row */

Assembly code output

| oopstart 2
L98
doensh3 dO
| oopstart3
L97
nmove. | di, (r0)+
| oopend3
L94
| oopend2

5-14 SC100 C Compiler

Optimization Types and Functions

5.3.2.1.6 Triangular loops

A triangular loop array access pattern is similar to the square loop described above, except that the pointer
moves to an incremented starting position in each row. The starting position pointer increments by linear
progression, as shown in Figure 5-3:

Figure 5-3. Triangular Loop

A triangular loop is transformed into amainly linear based loop, incorporating the offset increment as an
addition operation. Example 5-11 illustrates the transformation of atriangular loop.

Example 5-11. Loop transformation - triangular loop

C source code

int table[70][70];

int i, j;

for(i=0; i<70; i++)
for(j=i+3; j<70; j++)
table[i][j] = 0O;

Pseudocode before optimization Pseudocode after optimization
i =0; i =0;
L1 j =i tmpl = O;
i f(j>=70) goto L3 Repeat 70 tines
L2 tmpl =i * 140; j =1+ 3;
tnmp2 =j * 2 i f(j>=70) goto L3
tnmp3 = tnpl + tnp2; tnp2 =j * 2;
tabl e[tnp3] = O; tmp3 = tnpl + tnp2; /* offset */
j ++ tnmpd = table + tnp3;
if(j <70) goto L2 /* base + offset */
L3 i++ Repeat (70-j)
i f(i<70) goto L1 *tnp4d = 0O;
*tnpd = tnpd + 2;
L3 i++

tnpl = tnpl + 140;
/* next matrix row */

SC100 C Compiler 5-15

Optimization Techniques and Hints

Example 5-11. Loop transformation - triangular loop

Assembly code output

| oopstart 2
L98
cnpgt do, d2
jf L3
tfr do, d4 sub do, d2, d3
doensh3 d3
asl | #<2, d4
add d4, d1, d5
nove. | d5,r1
adda #> table, rl, r0
| oopstart3
L97
nove. | deé, (r0) +
| oopend3
L3
add #280, d1, d1
i nc do
| oopend2

5.3.2.2 Function inlining

Inlining replaces a call to afunction with a copy of the code for the function. In cases where the procedure
call and return may be more time-consuming than the function itself, function inlining can significantly
increase the speed of the program.

Inlining can decrease code size by removing overhead and enabling optimization opportunities.The
function inlining optimization is particularly effective with cross-file optimization, as the inlining can be
applied across all available files; thus functions that were inlined every where can be deleted.

The inlining heuristics were tuned to deal with code size and performance. At the command line, type - Gs
toinline for code size; otherwise, the compiler performs performance inlining. The following table
illustrates the conditions for performance inlining and for code size inlining.

-Cs on - Cs off
-QOg on code size inlining occurs performance inlining occurs
- Qg off limited code size inlining performance inlining occurs

occurs (code size inlining
only occurs for static
functions with - Os on

5-16 SC100 C Compiler

Optimization Types and Functions

The following example shows how the operation executed by the function Check isincorporated into the

code itself, removing the cal to the function.

Example 5-12. Function inlining

Before optimization
int Check(int x);

After optimization

voi d nai n()

{ {

return (x>10); if (y>10)
} a =5
voi d nain() }
{

if (Check(y))

a =5;

}

Y ou can force or suppress function inlining at specific points in the code, using the pragmas #pr agna
i nl'i ne and #pragma noi nl i ne. Refer to Section 3.4.5, “Pragmas,” on page 3-52, for further details.

5.3.2.3 Common subexpression elimination

Where an expression appears in more than one place in the code and has the same computed value in each
instance, this optimization replaces the expression itself with itsresult. Values|oaded from memory can be
included in this process, as well as values based on arithmetic computations. In the example shown below,

the variable x replaces the repeated subexpressione + f.

Example 5-13. Common subexpression elimination

Before optimization

After optimization

d=e +f +g; X =e + f;
y=e+f + 2z d=x +g;
y =X + z;

5.3.2.4 Loop invariant code

The term “invariant code” refersto an instruction which appears inside aloop, but whose valueis not
directly affected by the execution of the loop. This optimization moves such an instruction to a position
outside the loop, with the result that the instruction is not repeated each time the loop executes. In
Example 5-14, the variable z is set to the computed valueof 2 * b + 1 beforetheloop executes, and

this calculation is removed from the iteration.

Example 5-14. Loop invariant code motion

Before optimization

After optimization

b =c; b = c;
for(i=0; i<3; i++) z=2* b + 1;
di] =2* b + 1; for(i=0; i<3;i++)
di] = z;

SC100 C Compiler

5-17

Optimization Techniques and Hints

5.3.2.5 Constant folding and propagation

This optimization identifies expressions which contain i nt values known to be constants and cal culates
their value at compilation time. The value of the expression then replaces the expression itself, as shownin

Example 5-15 below.

Example 5-15. Constant folding and propagation

Before optimization

After optimization

X =2 X =2
Y = X + 10; Y = 12;
Z=2*Y, Z = 24,
5-18 SC100 C Compiler

Optimization Types and Functions

5.3.2.6 Jump-to-jump elimination

This optimization combines two jump operations into one, in cases where the code executes a jump to an
address, and at that address immediately jumpsto a different address.

In Example 5-16, the two jump instructionsgot o J1; andgot o J2; arereplaced by adirect jumptoJ2.

Example 5-16. Jump-to-jump elimination

Before optimization After optimization
i f(x) i f(x)
el se el se
goto Ji,; goto J2;
J1:
goto J2;

5.3.2.7 Dead code elimination

This optimization removes segments of “dead” code, meaning code that cannot possibly be executed. The
code may be dead from the start, or it may become dead as aresult of other optimizations. For example, the
code may specify a condition which can never be true. In the example shown below, the variable ¢ istype
char , which can never have avalue greater than 255, and therefore thei f condition will never be met.

Example 5-17. Dead code elimination

Before optimization After optimization

char c; a= 2
if ¢ > 300

a=1;
el se

a= 2

5.3.2.8 Dead storage/assignment elimination

Dead storage or assignment occurs when avariable is assigned a value, either directly or as aresult of an
expression, and is not used again anywhere in the code, or receives another value before being used. This
optimization removes any unnecessary instructions and unused memory locations which may result from
such cases. Thisredundancy may arise as aresult of other optimizations.

In Example 5-18, before optimization the variable a is assigned the value 5, and is not used before it is
reassigned the value 7. The dead storage/assignment elimination optimization removes the redundant
instructiona = 5. If the variable a was not used at all after being assigned a value, it would be removed
completely.

Example 5-18. Dead storage/assignment elimination

Before optimization After optimization
a=2>5; a=1
a==1

SC100 C Compiler 5-19

Optimization Techniques and Hints

5.3.3 Target-Specific Optimizations

The Low-Level Transformations (LLT) phase is a separate modular stage of the optimization process
which implements a number of target-specific optimizations. This phase transforms the linear code
generated by the target-independent optimization phase into parallel assembly code, which can take
advantage of the parallel execution units of the SC100 architecture.

The degree of paralldization that the optimizer is able to achieve is limited by the number and type of
dependencies within the source code. See Section 5.3.1, “Dependencies and Parallelization,” for a
summary of these issues.

Section 5.4, “Guidelines for Using the Optimizer,” provides detailed advice about preparing your source
code with a view to reducing dependencies and realizing the maximum potential for optimization.

All target-specific optimizations are applied when the Level 2 optimization (option -0O2) is selected.
Target-specific optimizations are not activated at all when either option -O0 or option -O1 is selected.

The major target-specific optimizations are summarized in Table 5-4, and examples of each are given in
the sections that follow.

Table 5-4. Summary of Target-Specific Optimizations

Optimization Description Section Page

Instruction scheduling Executes multiple instructions in the same cycle, fills 5.3.3.1 5-22
delay slots associated with a branch operation, and
avoids pipeline restrictions

Target-specific software pipelining Rearranges instructions in a loop to minimize 5.3.3.2 5-23
dependencies

Conditional execution and Transforms a branch into a sequence of conditional 5.3.3.3 5-26

predication actions

Speculative execution Moves instructions from conditional to unconditional 5.3.3.4 5-27
paths

Post-increment detection Combines the functions of incrementing (or 5.3.35 5-28

decrementing) a pointer and accessing the computed
address into one instruction

Target-specific peephole Merges a sequence of instructions into a single 5.3.3.6 5-29
optimization instruction
Extract peephole optimization Replaces multiple instructions and cycles with one 5.3.3.7 5-30

word or one cycle (combines AND instructions)

Multiply strength reduction Replaces integer multiplies by constants with 53.38.1 5-32
combinations of ASRs and ASLLs

5-20 SC100 C Compiler

Optimization Types and Functions

The optimizer applies the target-specific optimizations in a predefined sequence, and invokes some of the
optimizations more than once, asillustrated in Figure 5-4. Each optimization is directly affected by the

result of the preceding optimization.

y Y

Conditional .

. Instruction
Execution and .
Predication Scheduling
/ Y
Lifetime Eveottion and
Analysis Predication
Y [
Loop Invariant Lifetime
Code Analysis
Y
Post-increment Global
Detection Register
Allocator
Peephole Instruction
Scheduling
/

Dependencies Peephole
Software Machine
Pipelining Restrictions

Y
Speculative
Execution

Figure 5-4. Sequence of Target-Specific Transformation Optimizations

SC100 C Compiler 5-21

Optimization Techniques and Hints

5.3.3.1 Instruction scheduling

The main purpose of this optimization is to execute as many instructions as possible from the same
instruction stream in the same cycle. The amount of dependency between the instructions limits the extent
to which this can be achieved.

The instruction scheduling optimization organizes instructions into execution setswherever it is possible to
do so, making best use of the Data Arithmetic Units and Address Generation Units provided by the SC100
architecture.

Example 5-19 illustrates the use of instruction scheduling:

Example 5-19. Instruction scheduling

Before optimization After optimization

nove. | do, (r0) nove. | do, (r0) i nc do

i nc do tfra r3,r0 nmove (rl)+,d1
tfra r3,r0 adda #12,r3

adda #12,r3

nmove (rl)+d1l

Instruction scheduling serves two further purposes:
e Filling delay slots when branch instructions are executed, as described below

« Rescheduling operations that are not dependent on pipeline restricted instructions, as described in
Section 5.3.3.1.2, “Avoiding pipeline restrictions,” on page 5-23

5.3.3.1.1 Filling delay slots

A branch instruction requires three cycles to execute if the branch is taken. When a branch executes, the
prefetch queue islost, and the cycles used for the other instructions are wasted, since they cannot execute
until the branch instruction has completed. The wasted cycles are termed delay slots.

The instruction scheduling optimization checks whether other operations can be executed at the same time
as the branch instruction. Thisis not possible if there are limiting factors, for example:

e Thebranchinstruction is directly affected by the instructions which precede it.
e There are specific dependencies between the branch and the other instructions.

If there are no limiting factors, the schedul er rearranges the code, in order to use the delay slots efficiently.
In the following example, the code has been reorganized to enable three instructions to execute during the
time that the branch requires to complete its operation.

Example 5-20. Filling delay slots

Before optimization After optimization

nove. | do, (r0) rtsd

i nc do nove. | do, (r0) i nc do tfr d5,d2
tfr ds, d2

res move.1 do, (r0) inc do tfr ds, d2

5-22 SC100 C Compiler

Optimization Types and Functions

5.3.3.1.2 Avoiding pipeline restrictions

Certain instructions, for example, amove to an Rn register, are subject to pipeline restrictions. The effect
of these instructions may not be implemented until two or more cycles after the instruction executes. In
such cases, an operation which is dependent on the result of such an instruction, and which follows it
immediately, must wait until the result is available.

Theinstruction scheduling optimization rearranges the sequence of such instructions where possible, using
the cycle(s) which would otherwise be wasted to implement one or more operations that are not dependent
on the restricted instruction.

In Example 5-21, thecl r instruction has been rescheduled, since it can execute before the effect of the
nmove. | instruction isimplemented, whereas the nove. w instruction must wait for the results of the
nove. | operation.

Example 5-21. Avoiding pipeline restrictions

Before optimization After optimization
nove. | do, (r0) nove. | do, (r0)
nop clr do

nmove. w(r0), dl nmove. w(rO0), dl
clr do

5.3.3.2 Target-specific software pipelining

Software pipelining provides a further level of loop optimization, in addition to the target-independent
optimizations which operate on loops.

The software pipelining optimization attempts to rearrange the sequence of instructions inside aloop, in
order to minimize dependencies between such instructions, and thus increase the level of parallelization.

For example, a segment of code may consist of threeinstructions, A, B and C, within aloop which iterates
4 times. In some cases, the code may be reorganized into a different sequence without affecting its resuilt,
for example:

1. Instruction A
2. InstructionsB, C, A, in aloop which iterates 3 times
3. Instruction B
4. Instruction C
The revised arrangement of the instructions results in fewer dependencies than in the origina code.
This optimization is applied only to innermost loops of small or moderate size, which contain no branches

or function calls within the loop. It is most effective when applied to loops that execute alarge number of
times.

Each iteration of a software pipelined loop may contain instructions from a different iteration of the
original loop.

Software pipelining increases code size in almost all circumstances. When optimization for sizeis
specified, software pipelining is suppressed entirely.

SC100 C Compiler 5-23

Optimization Techniques and Hints

The following example shows how the software pipelining optimization reduces the number of iterations
and rearranges instructions both within and outside the loop, thus enabling the maximum number of
instructions that are not dependent on each other to execute in parallel.

Example 5-22. Software pipelining - complex FIR

C source code

for (i =0; i <N i++)

{

Ltnmpr =L mac (L_tnpr, sanple[i].r, coeff[N- i - 1].r);
Ltnmpr =L msu (L tnpr, sanple[i].i, coeff[N- i - 1].i);
Ltnpi =L mac (L tnpi, sanple[i].i, coeff[N- i - 1].r);
Ltnpi =L mac (L tnpi, sanple[i].r, coeff[N- i - 1].i);
}

Before optimization

| oop n tines:

nove. w(r0)+, d4
nove. w(rl)-,d3
nac d3, d4, d5
nmove. w(r0)+, d1
nmove.w (rl)-,d2

nac -d1, d2, d5
nac d3, di, d6
nac d2, d4, dé

After optimization
/* Prolog */

nove. w(rO0)+, d4
nac d3, d4, d5

loop n-1 times:
/*start | oop*/
[
nmac
nove. w

nac
nove. w

]

/ *endl oop*/

/* Epilog */
nac d3, di, d6
nac d2, d4, dé

nove. w
nove. w

d3, di, dé

(r0)+, d4

d3, d4, d5
(r0)+ di

nac -d1, d2, d5

(r1)-,d3
(r0)+ di

nove. wW(r1l)-, d2

-d1, d2, d5
(r1)-,d3

d2, d4, d6
(r1)-,d2

5-24

SC100 C Compiler

Optimization Types and Functions

In the following example, the loop iterates only 8 times, instead of the 10 in the original code, since two
iterations have been unrolled. The loop executes in a single cycle. During this cycle the loop:

* Loadsavauefromiterationi +2
e Multipliesthe value from iterationi +1
+ Storesthe result value from iteration i

Example 5-23. Software pipelining - vector multiplication by a constant

C source code
for (i=0; i<10; i++)
b[i] = mlt(a[i], 0x4000);
Assembly code after optimization
doensh3 #<8 ; Pipelining | oop tw ce
nove. | # a,rl
nove. f #16384, d1
nove. f (r1)+,d0 nove.l # b, r0

npy do,d1,d2 nove.f (rl1)+, do
| oopstart3

L93
[
nmoves. f d2, (r0)+
npy do, di, d2
nove. f (r1)+,do

]
| oopend3

L92
noves.f d2,(r0)+ npy dO, dl, d2
noves.f d2,(r0)+

SC100 C Compiler 5-25

Optimization Techniques and Hints

5.3.3.3 Conditional execution and predication

The conditional execution and predication optimization simplifies small conditional structures and
transforms the branch into one sequence.

An example of this transformation is shown in Example 5-24, in which two branches are removed.

Example 5-24. Conditional execution and predication

C source code
If(a < 0){
| ower _bound = 0;
i =0;
}el se
| ower _bound = a;
Generated code before optimization Generated code after optimization
nove. w a, do nove. w a, do
tstgt do tstgt do
bf L_Fal se ift clr d2 clr d3
clr d2 iff tfr do,d2
clr d3 nove. w d2, | oner bound
bra L Afterlf
L_Fal se
tfr do, d2
L Afterlf

nove. w d2, | oner _bound

An additional advantage of this optimization isthat it increases the size of the basic blocksin the optimized
code segment, making further optimization more effective.

It isimportant to note, however, that the conditional execution optimization adds one word for each branch
thatitreplaces (i ft andi f f inthe above example). Asaresult, the impact on the size of the program can
be considerable. Generally, this optimization is only activated for small structures where the number of
instructions added isless or equal to the number of instructions saved.

5-26 SC100 C Compiler

Optimization Types and Functions

5.3.3.4 Speculative execution

The speculative execution optimization moves instructions from conditional to unconditional paths, in
order to fill execution dots that would not otherwise be used.

If an empty execution dot is available when a condition statement is encountered, the instructions are
rearranged so that the conditional instructions execute unconditionally in previous cycles to the condition.
If the condition istrue and thei f t instruction has been executed, or if the condition isfalse and thei f f
instruction has been executed, a cycle has been gained. If the condition result does not match the moved
instruction, the appropriate instruction is executed as normal, with no loss of cycles.

Example 5-24 shows an example of thistransformation. In this example, thefirsti f f instruction is moved
so that it executes in the same cycle asthe cnpgt instruction. If the result of the conditional operation is
true, thei f t instruction is executed in the next cycle. If the result is false, the instruction that was
previously the secondi f f isexecuted, with the result that only one cycle is used instead of two.

Example 5-25. Speculative execution

C source code
[f(var > 5)
xX[3] = a;
el se
y =b;
Generated code before optimization Generated code after optimization
cnpgt #5, d1 nove.l x+6,r0 cnpgt #5, d1
nop nop
i ff nove.|l Xx+6,r0 i ff nove.|l d3, y
i ff nove.|l d3, vy ift nove. | d2,(r0)

ift nove. |l d2,(r0)

This optimization can be implemented successfully for one or more instructionsiif:
e Sufficient slots are available.
e There are no dependencies between the instruction in the conditional path and other instructions.
e The conditional instruction does not have any specific side effects.

SC100 C Compiler 5-27

Optimization Techniques and Hints

5.3.3.5 Post-increment detection

This optimization exploits the features of the SC100 architecture, and increases code efficiency in terms of
both size and speed. It identifies the instructions which use arithmetic functions to modify pointers, and
which access the computed addresses, and replaces them with special post-increment or post-decrement
address mode instructions which combine both functions.

The increment (or decrement) factor is not limited to the values 2 or 4, since any one of the four index
registers (n0 through n3) may be used, asillustrated in Example 5-26.

Example 5-26. Post-increment detection

Generated code before optimization

L150
nove.l # L Rr4
nove.| # OQpdates,r5
doen3 #<8
doset up3 L183
| oopstart3

L183
nove.l (r4),do0
nove.l (r5),dl
nac do, di, d2
adda #<4,r4
adda #<12,r5
| oopend3

L152

Generated code after optimization

L150
doensh3 #<7
nmove. w #3, n3

; Pi pelining | oop once

nove. | # L Rr4
nove. | # OQJpdates, r5
nove. | (r4)+,do
nove. | (r5)+n3,d1
| oopstart3
L183
[
nac do, d1, d2
nove. | (r5)+n3,d1
nove. | (r4)+,do
1
| oopend3
L152
nac do, d1, d2

5-28

SC100 C Compiler

Optimization Types and Functions

5.3.3.6 Target-specific peephole optimization

The target-specific peephole optimization identifies sequences of instructions that can be merged into a
singleinstruction, and implements this transformation, as shown in Example 5-27.

Example 5-27. Target-specific peephole optimization

Generated code before optimization Generated code after optimization
deca ro decgea ro
nove. w #33, dO nove. w #33, dO
tstgea. | ro

Example 5-28 illustrates a combination of pipelining and peephole optimizations. After pipelining, the
final mac instruction, which has been moved outside the loop, is merged with ther nd instruction to form a
macr instruction.

Example 5-28. Combined pipelining and peephole optimizations

Generated code before optimization Generated code after optimization
doen #9 doen #8 ; Pipelining | oop once
doset up0 L1 doset up0 L1

nove. w (r0)+,d3
| oopstartO nove. w (rl1)+ d2

L1 | oopstartO
nove. w (r0)+,d3
nove. w (rl)+ d2 L1
nac d2, d3, d7 nac d2, d3, d7

nove. w (rl1)+ d2
| oopendO nove. w (r0)+,d3
| oopend0
rnd d7
nmacr d2, d3, d7

SC100 C Compiler 5-29

Optimization Techniques and Hints

5.3.3.7 Extract peephole optimization

Extract peephole optimization replaces ASR and AND operations with EXTRACT and ASLL operations.
The compiler only performs this optimization when the AND operation has one constant operand and that
constant operand contains only one string of contiguous ones.

The EXTRACT instruction performs an implicit ASR that places the resulting bits of interest into the LSB
positions. Therefore, the compiler may add an ASLL after the EXTRACT/EXTRACTU instruction so that
the bits end up in the correct position, asillustrated in example 5-30. The EXTRACT/EXTRACTU
instruction can also encompass a ASR that may be present around the original AND instruction, as
illustrated in example 5-31.

The optimization needs to use the correct extract instruction, EXTRACT or EXTRACTU. Normally, the
EXTRACTU instruction is used. The EXTRACT instruction is used when the original ASR instruction
may cause the M SB positions to be set to one (assuming the sign bit is set to 1).

The extract peephole optimization isintelligent and aggressive, cognizant of the code size and cycle
implications of the transformation; therefore, the optimizer only applies this optimization when it
determines that a benefit is possible. Examples 5-29, 5-30, and 5-31 illustrate when extract peephole
optimization is beneficial.

Example 5-29. When the AND constant does not fit in lower or upper 16 bits

Generated code before optimization
;;total words = 4 and total cycles = 2

nove. | #%$18000, d2 ; 3-word instruction
and do, d2 ; 1-word instruction

Generated code after optimization
;;total words = 3 and total cycles = 2

extractu #<2, #<15, dO, d2 ; 2-word instruction
asl | #<15, d2 ; 1-word instruction

5-30 SC100 C Compiler

Optimization Types and Functions

Example 5-30. ASR followed by an AND (no ASLL necessary)

Generated code before optimization
;;total words = 3 and total cycles = 2

asrr #<13, d1 ; 1-word instruction
and #%$e000, d1, di ; 2-word instruction

Generated code after optimization

;;total words = 2 and total cycles =1
extractu #<3, #<13, d1, d1 ; 2-word instruction

Example 5-31. Using an EXTRACT instead of an EXTRACTU

Generated code before optimization
;;total words = 3 and total cycles = 2

and #$f 0000000, d1, di ; 2-word instruction
asrr #<28, d1 ; 1-word instruction

Generated code after optimization
;;total words = 2 and total cycles =1

extract #<4,#<28,d1,d1l ; 2-word instruction

SC100 C Compiler 5-31

Optimization Techniques and Hints

5.3.3.8 Target-Specific Strength Reduction

Strength reduction increases the effectiveness of the code by transforming operationsthat are “ expensive”
in terms of resources, into less expensive, linear operations. For example, addition and subtraction are
linear functions that require less operation cycles than multiplication and division.

When an address cal culation that contains multiplication is replaced by one containing addition, the
amount of resources required by the code is significantly reduced, since addition can be implemented using
the complex addressing mode of the Address Generation Unit (AGU).

5.3.3.8.1 Multiply Strength Reduction

Multiply strength reduction is an enhanced strength reduction for multiplication operations. It occurs when
one of the operandsin an instruction is a constant. During multiply strength reduction, the compiler
determines which combinations of shifts, by power of two, and adds/subtracts can create the equivalent to
the constant multiplication. Thisis an important optimization because it can take seven assembly
instructions to implement 32-bit multiplication of integersin SC100 architecture.

5-32 SC100 C Compiler

Optimization Types and Functions

5.3.3.9 Prefix grouping

Instruction grouping is applied by the optimizer wherever possible, in order to make best use of the

avail able multiple execution units. In addition to “natural” grouping of instructions, which increases
efficiency and does not increase code size, the optimizer can implement prefix grouping. Prefix grouping is
amechanism whereby an additional word isintroduced into the code in order to force more than one
instruction to execute in the same cycle.

Prefix grouping improves performance in terms of speed, but increases the size of the code. The optimizer
activates prefix grouping on the entire code.

5.3.4 Space Optimizations

When you select the - Gs option, the optimizer aims to produce code that occupies as little memory space
as possible for the given optimization level. In certain cases, the reduced memory space may be at the
expense of program speed.

The compiler executes all optimizations associated with the specified optimization level, except for those
that increase the code size, as noted below:
« For target-independent optimizations, - Os specifies the use of inlining heuristics.
« For target-specific optimizations, - Os does the following:
— Disables software pipelining.
— Omits conditional execution.

— Usesonly seria grouping when encoding assembly instructions, since code size is increased
when prefixes are added, as described in Section 5.3.3.9, “Prefix grouping.”

Y ou can use the - Gs option in combination with any other optimization option except - Q0. If no
optimization level is specified with - Gs, Leve 2 optimization (- O2 option) is selected by default.

The command line shown in Example 5-32 invokes the optimizer with the default Level 2 optimizations.
All target-independent and target-specific optimizations, except those noted above, are applied across all
modules in the application.

Example 5-32. Invoking the optimizer for space optimization
scc -G -g -o filel.eld filel.c file2.c

SC100 C Compiler 5-33

Optimization Techniques and Hints

5.3.4.1 Code Sinking Optimization

Code sinking is a space optimization that downsizes replicated code by sinking duplicated operations. It
creates basic blocks when necessary, enabling the compiler to apply the optimization more often.

Code sinking optimization is only executed when optimizing for code size using the -Os option.
Two important aspects of code sinking optimization are:

» Code sinking optimization makes educated guesses about the code size implications of the
transformation. It only performs the optimization when it believes that a code-size reduction is
likely.

» Code sinking optimization alters the control flow of the program in order to enable code sinking.
This alteration allows code from a subset of ajoin’s preceding blocks to be sunk. Thisis only
performed when thereislikely to be a positive result.

Example 5-34 illustrates code before and after code sinking optimization occurs.

Example 5-33. Code sinking optimization

Generated code before optimization Generated code after optimization
if(index > 0x37) if(index > 0x37)
{
array[index]= array[index - 0x37]; tenp_i ndex = index - 0x37;
array[index - 0x37]=tnp; }
el se
el se {
{ tenp_index = index + 0x37;
array[index]= array[index + 0x37]; }
array[index + 0x37]=tnp; array[index]= array[tenp_index];
} array[tenp_index]=tnp;

5-34 SC100 C Compiler

Guidelines for Using the Optimizer

5.3.5 Cross-File Optimizations

Cross-file optimization produces the most effective form of optimization, since optimizations are applied
across al thefilesin the application. Y ou can specify the - Qg option in the command line together with
any of the optimization options except the - Q0 option. The - Og option is most effective when used with
the default level - O2.

In addition to implementing the selected level of optimization across all the files, cross-file optimization
also applies two specific optimizations:

» Functioninlining across multiple files, which applies the optimization described in Section 5.3.2.2,
“Function inlining,” to the whole program. As with function inlining for individual files, this may
increase the size of the code, but can considerably increase execution speed. If you specify - Os, the
code size may actually decrease.

e Optimization of accessto global and static variables.

5.3.5.1 Rules for using Cross-file Optimization
To receive optimal results using cross-file optimization, follow these rules:

1. You must compile the entire application together.
2. You can only link the Standard C library that is shipped with the Compiler.
3. Assembly functions can only call other assembly functions and library functions.

5.4 Guidelines for Using the Optimizer

The optimizer produces the best possible results when the source code is written in asimple and
straightforward manner. Complex structures and algorithms should be avoided wherever possible, since
these can reduce the effectiveness of many of the optimizations.

During the various optimization phases, the compiler attemptsto convert all the structuresin the code into
aform that isindependent of the style of an individual user, and that can be processed efficiently by the
individual optimizations. By following the basic rules of clarity and simplicity when writing your code,
you help the optimizer to retrieve the specific information it needs, and to apply the maximum amount of
optimization.

For example, when accessing arrays you should use simple access instructions wherever possible, and
avoid using complex access instructions which use pointers, as shown in Example 5-34:

Example 5-34. Simple and complex array accesses

a) Simple array access (recommended) b) Complex array access (not recommended)

a[i] p = &[0]
*pt+t;

Section 5.4.3, “General Hints,” provides further general guidelines for writing simple code structures to
assist optimization.

Y ou can further enhance the results of the optimization by applying two specific techniques that help the
optimizer take full advantage of the multiple execution units of the SC100 architecture:

SC100 C Compiler 5-35

Optimization Techniques and Hints

e Partial summation, which reduces dependencies in aloop, enabling multipleiterations of aloop in
paralel

e Multisample processing, a programming technique which processes multiple samples
simultaneously

These techniques are described in the sections that follow.

5-36 SC100 C Compiler

Guidelines for Using the Optimizer

5.4.1 Partial Summation Techniques

One of the optimizer's major functionsisto produce parallelized code that fully utilizes the available
number of multiply-accumulate (MAC) units. The number of MAC units that can be used in an execution
set, meaning the number of instructions executed in the same cycle, is usually limited by the degree of
dependency within the code.

The partial summation programming technigue helps you reduce the dependencies in the loops in your
source code, in such away that the iterations can execute in parallel. By structuring your source code using
partial summation techniques wherever possible, you enable the optimizer to further reduce dependencies
and increase paral€elization.

In Example 5-35, the inner loop can use only asingle MAC per cycle, because of the inner dependency
within the algorithm. The same output code is generated when compiling for asingle, dual, or quad MAC
StarCore system.

Example 5-35. MAC usage limited by dependency in loop

Source code
void lir(short Input[], short Coef[], short FiltQut[])
{
long L_Sum= 0; short int Stage, Snp; int LoopCount;
FiltQut[0] = Input[0];
for (Snp = 1; Snp < S LEN Snp++)
{

L_Sum = LPC ROUND, LoopCount = (Snp<NP ? Shp @ NP);

for (Stage = 0; Stage < LoopCount; Stage++)
L Sum=L nmsu(L_Sum FiltQut[Smp - Stage -1], Coef[Stage]);

L Sum= L shl(L_Sum ASH FT);
L_Sum= L _nsu(L_Sum Input[Snp], 0x8000);
FiltQut[Smp] = extract _h(L_Sum;

}
}
Generated code
doenshl dO
nove. f r2)+, d0 nove.f (rQ)-,dl
| oopstartl
PLOO1
nac -do, d1, d2 nmove. f (r0)-,dl nove. f (r2)+,dO
| oopendl
PLOOO

nac -do, d1, d2

SC100 C Compiler 5-37

Optimization Techniques and Hints

Example 5-36 illustrates how you can use partial summation to split the inner loop in the above exampleto
enable two parallel iterations. The loop iterates half the number of times. The sum is accumulated using

two variables, which are combined outside the loop.

Example 5-36. Partial summation for dual MAC usage

Source code
for (Stage = 0; Stage < (LoopCount>>1); Staget+)
{
L Sum=L msu(L_Sum FiltQut[Smp - 2*Stage -1],
L Sunml = L nsu(L_Sunl, FiltQut[Snhp - 2*Stage -2],
}

L_Sum= L_shl (L_SumtL_Sumi, ASH FT);
L_Sum= L_nsu(L_Sum Input[Snp], 0x8000);

Generated code
doen shl doO
nove. 2f (r2)+,d0dl nove.2f (r0)-, d6d7
| oopstartO
PLOO1
[
nac - do, d6, d2
nac -d1, d7,d5

nove. 2f (rQ)-, d6: d7
nove. 2f (r2)+,d0: d1
]
| oopend0O

PLOOO

nac -do, d6, d2 nac -d1, d7, d5

Qoef [2* St age]) ;
Coef [2* St age+1]) ;

The same technique can be used for compiling with a quad MAC system, by splitting the loop into four

iterations, using four variables and one quarter the number of iterations.

It isimportant to note that partial summation is not suitable for algorithms with bit-exact requirements.
This technique changes the order of the calculation, and may affect the value of the result in cases where

statements must be executed in the exact order specified.

In certain algorithms the effectiveness of the partial summation technique may be limited because of
alignment restrictions. For example, the nove. 2f instruction, which isrequired for partial summation,

must be used on along word boundary.

5-38

SC100 C Compiler

Guidelines for Using the Optimizer

In Example 5-36, thisrestriction is satisfied, and the partial summation technique can be used successfully.
Example 5-37 shows an algorithm for which partial summation cannot be used. Thisis because the second
iteration produces an odd value for the variable i , with the result that the move. 2f instruction violates the
aignment requirement.

Example 5-37. Alignment restrictions in algorithms

for (i =0; i < DataBl ockS ze; i++)

{
Del ay[(Dat aBl ockSi ze-i)] = Dataln[i];
suml = 0; sun? = 0O;
for (j =0; j <FirSzel2; j++)

{
sum = L_nac(sum Coef [2*j], Del ay[2*j-i]);
sum = L_mac(sum Coef [2*] +1], Del ay[2*j -i +1]);
}
Result = round(sunj;

}

The multisampl e techniques described in the following section can help you write source code which
enables the optimizer to take further advantage of multiple execution units. Y ou can apply multisample
techniques even if you cannot use partial summation for certain algorithms because of alignment
restrictions or hit-exact requirements.

SC100 C Compiler 5-39

Optimization Techniques and Hints

5.4.2 Multisample Techniques

To obtain high performance, a pipelining technique called “multisample” programming is used to process
multiple samples simultaneously. The multisample programming techniques enable you to obtain high
performance by taking full advantage of the SC100 multiple-ALU architecture.

Thisfollowing terminology is used throughout this section:

e Generic Kernel: The minimum required operations of the algorithm. The generic kernel isthe
theoretical minimum size of the kernel without considering implementation constraints.

e BasicKernd: Theinner loop of a DSP algorithm. This may contain several replications of the
generic kernel or additional code for pipelining. The basic kernel is actually implemented on the
DSP and is subject to implementation constraints.

e Operand: A valueused asaninput to an ALU.
« Delays: Values stored as adelay line for referencing past values.
e |teration: The complete execution of abasic kernel.

e Loop pass: The execution of the instructions within the basic kernel. Many loop passes may be
needed to complete asingle iteration of the kernel.

To process several samples simultaneoudly, operands (both coefficients and variables) are reused within
the kernel. Although a coefficient or operand is loaded once from memory, multiple ALUs may use the
value, or the value may be used in alater step of the kerndl.

Figure 5-5illustrates the structure of a single sample and multisample algorithm.

Single x(n) —®=| Multiple ——®y(n)
Sample Sample
x(n), X(n+1) —— DSP —®y(n), y(n+1) DSP
Kernel x(n+1) — = Kernel —y(n+1)
A. Single Sample Algorithm B. Multiple Sample Algorithm

Figure 5-5. Single Sample and Multisample Kernels

In asingle sample algorithm (Figure 5-5 A), samples are processed by the algorithm serially. The kernel
processes a single input sample and generates a single output sample. For an algorithm such as an FIR,
samples are input to the FIR kernel one at atime. The FIR kernel generates a single output for each input
sample. Blocks of samples are processed using loops and executing the FIR kernel several times.

In contrast, the multisample algorithm (Figure 5-5 B) takes multiple samples at the input in parallel and
generates multiple samples at the output simultaneously. The multisample algorithm operates on datain
small blocks. Operands and coefficients are held in registers, and applied to both samples simultaneously,
resulting in fewer memory accesses.

Multisample algorithms are ideal for block processing algorithms where data is buffered and processed in
groups (such as speech coders). Figure 5-5 B shows two samples being processed simultaneously.
However, the number of simultaneous samples depends on the processor architecture and type of
agorithm.

5-40 SC100 C Compiler

Guidelines for Using the Optimizer

Most DSP algorithms have a multiply-accumulate (MAC) at their core. On aload/store machine, the
register file isthe source/destination of operands to/from memory. For the ALU, the register file isthe
source/destination of operands. On a single sample, single ALU algorithm, the memory bandwidth is
typically equal to the operand bandwidth, as shown in Figure 5-6.

= £
2 s
g 2
a5 Register | g5
ALU File o Memory
- - >
5 g
@ =
o Q
9 =

Figure 5-6. Single ALU Operand and Memory Bandwidth

When increasing the number of ALUs to four, the bandwidth increases as shown in Figure 5-7.

ALU Memor
- - y
e
AU | ; ’ “—5 Memory
4—-§—> Register 4—.§—>
@ File a
> -2
ALU 5 2 Memory
(O]
o ()
ALU > : Memor
<> <> y

Figure 5-7. Quad ALU Operand and Memory Bandwidth

Quadrupling the number of ALUs quadruples the operand bandwidth. If there is one address generator per
operand, this results in eight address generators. This is undesirable because it requires an 8 port memory
and a significant amount of address generation hardware.

The SC140 DSP core solves this problem by providing up to a quad operand load/store over asingle bus.
With two quad operand loads, eight operands can be loaded using two address generators.

Although quad operand loading provides the proper memory bandwidth, some algorithms have special

memory alignment requirements. These alignment requirements make it difficult to use multiple operand
load/stores.

Multisample algorithms provide a solution for implementing algorithms with memory alignment
requirements. By reusing previously loaded values, the number of operands loaded from memory is
reduced, which relaxes the alignment constraints.

SC100 C Compiler 5-41

Optimization Techniques and Hints

Both techniques for increasing operand bandwidth, by using wider data buses or by reusing operands, are
shown in Figure 5-8.

Quad Operand Reaqister
ALU < » = Data Buses ALU ,g-l
P 2 - ile
s 3 = <
4%» g 4%») B
ALU 5 o0 ALU «Z » % =
g Register .l .. Memory 8 « 5_p| Memory
ALU g & | Fle > au S 2P & 2
2 2 g g 5
<« » «° » =
ALU = ALU
- P

Figure 5-8. Options for Increasing Operand Bandwidth

To introduce the multisample technique, four example DSP kernels are written in multisample form. The
DSP kernels presented are direct form FIR filter, direct form IR filter, correlation and biquad filter.

5.4.2.1 Multisample implementation issues

When implementing a DSP algorithm such as an FIR filter, trade-offs are made between the number of
samples processed and the number of ALUs as shown in Figure 5-9.

Number of ALUs
1 2 4

)

[}

ey 1 sample, 1 sample, 1 sample,
e 1 1ALU 2 ALUs 4 ALUs

@

0]

— 2 samples, 2 samples, 2 samples,
° 2 1ALU 2 ALUs 4 ALUs

[}

g 4 samples, 4 samples, 4 samples,
5 4 1ALU 2 ALUs 4 ALUs

Z

Figure 5-9. Number of Samples and ALUs for Implementing DSP Algorithms

Asthe kernel computes more samples simultaneously, the number of memory |oads decreases because
dataand coefficient values are being reused. However, to obtain this reuse, more intermediate results are
required, which typically requires more registers in the processor architecture.

If the operand memory requires wait states, this technique improves the speed of the agorithm. If the
operand memory is full speed, then the algorithm does not execute any faster, but may reduce power
consumption because the number of memory accesses has been reduced.

By using more AL Us, it istheoretically possible to compute an algorithm faster. Moving across the row
theoretically applies 1, 2 or 4 ALUsto the algorithm. To apply multiple ALUs, some degree of parallelism
is required in the algorithm to partition the computations.

5-42 SC100 C Compiler

Guidelines for Using the Optimizer

Although computing a single sample with multiple ALUs is theoretically possible, limitationsin the DSP
hardware may not allow this style of algorithm to be implemented. In particular, most processors typically
reguire operands to be aligned in memory and multiple operand load/stores to be aligned.

For example, a double operand load requires an even address and a quad operand load requires a double
even address. These types of restrictions are typical to reduce the complexity of the address generation
hardware (particularly for modulo addressing).

Restricting the boundaries of the load makes implementing some algorithms very difficult or impossible.
Thisis easiest to explain by way of example. Consider a series of (aligned) quad operand loads from
memory, as shown in Figure 5-10.

Load Load Load Load

Figure 5-10. Quad Coefficient Loading from Memory

Theloads in Figure 5-10 do not have a problem with alignment because loads occur from double even
addresses.

Alignment problems typically occur with algorithms implementing delay linesin memory. These
algorithms delete the oldest delay and replace it with the newest sample. Thisistypically done by using
modul o addressing and “backing up” the pointer after the sampleis processed. Thisleads to an addressing
alignment problem as shown in Figure 5-11.

First
Iteration
Pointer Load Load Load Load
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Second
Iteration

Load Load Load Load Pointer

Figure 5-11. Misalignment when Loading Quad Operands

On thefirst iteration of the kernel, quad data values are loaded starting from a double even address. This
does not create an alignment problem. However, at the end of thefirst iteration, the pointer is backed up by
one to delete the oldest sample. On the next iteration, the pointer is not at a double even address and the
guad dataload is not aligned.

SC100 C Compiler 5-43

Optimization Techniques and Hints

A solution to the alignment problem is to reduce the number of operands moved on each databus. This
relaxes the alignment issue. However, in order to maintain the same operand bandwidth, each |oaded
operand must be used multiple times. Thisis a situation where multisample processing is useful.

Asthe number of samples per iteration increases, more operands are reused and the number of moves per
sampleis reduced. With fewer moves per sample, the number of memory loads is decreased allowing

fewer operands per bus. Fewer operands per bus allows the data to be loaded with fewer restrictions on
alignment.

5.4.2.2 Implementation example

The FIR_A434 Quad ALU, quad sample, is the highest performance implementation on aquad ALU
SC100 DSP.

To further increase the performance of the FIR filter, four ALUs may be used. To avoid misalignment, four

samples are processed simultaneously. The quad ALU, quad sample FIR dataflow isshownin
Figure 5-12.

< X()
< x(n+1)
< x(n+2)
€ X(n+3)
— y(n)

— y(n+1)
- y(n+2)
- y(n+3)
< X(n+4)
< X(N+5)
<« X(+6)
<« X(N+7)
— y(n+4)
— y(n+5)
— y(n+6)
— y(n+7)

4 ALUs 4 ALUs 000

—>
—>

Coefficients

Past Input Samples -ag—p»|
Coefficients

Past Input Samples --g—p»

Figure 5-12. Quad ALU, Quad Sample FIR Filter Data Flow

Input samples are grouped together four at atime. Coefficients and delays are loaded and applied to all
four input values to compute four output values. By using four ALUS, the execution time of the filter is
only one quarter the execution time of asingle ALU filter.

5-44 SC100 C Compiler

Guidelines for Using the Optimizer

To develop the FIR filter equations for processing four samples simultaneously, the equations for the
current sampley(n) and the next three output samplesy(n+1) ,y(n+2) andy(n+3) areasshownin
Figure 5-13.

|

y(r) =\x(C) S&}J - x(lmz éj . x\in-i) c_\b ixinf) és ix(j“t) ¢L4+_x(nj—5) G5+ (6 C%e +X(n7) d|]7
y(n+1) = x(n+1) g‘:o + erl) Cj +_x(n\;L)L cii + x(n\zL) cf, H X(M\3) di +x(n-4) C5 + x(n-5) cb + x(n-6) d7
y(n+2) = x(n+2) @o 4 X(1+1) (C1 + X(0) C2 4 x(ML) G3+ x(-2) T4 + x(r- 3) ¢5+ x(nd) <36_+ X(n-5) 07
Y3 =x(143) G+ (r+2) GL+ x(n+L1>4¢2 - x(.\Jqu A ot B o0 Ch o) T

|
\
\ Generic Kernel

__W

| |

Figure 5-13. FIR Filter Equations for Four Samples

The generic kernel has the following characteristics:

e Four paralel MACs.

* One coefficient isloaded and used by all four MACsin the same generic kernel.

* Onedelay valueisloaded, used by the generic kernel and saved for the next three generic kernels.
e Three delays are reused from the previous generic kernel.

To develop the structure of the quad ALU kernel, the filter operations are written in parallel and the loads
are moved ahead of where they are first used. This creates the generic kernel shown in Figure 5-14.

Generic Kernel load x(n+3)

load x(n+2)
load x(n+1)
_load CO, load x(n)

n+1) =0
y(n+1) “Joad C1, load x(n-1)

_y(nt+1) += CO*x(n+1)

y(n+2) =0 y(n+3) =0

y(n)=0
Y(n+2) += CO*x(n+2) _y(3) += COFX(n+3)

Y(n) += CO*x(n) _

y(n) +=CI*x(n-1I)

y(m = C2*x(n-2)

y(n) += C3*x(n-3)
y(n) += C4*x(n-4)
y(n) += C5*x(n-5)
y(n) += C6*x(n-6)
y(n) += C7*x(n-7)

y(n+1) += C1*x(n)

Y(rFL)F=C2X(n-1)
y(n+1) += C3*x(n-2)
y(n+1) += C4*x(n-3)
y(n+1) += C5*x(n-4)
y(n+1) += C6*x(n-5)
y(n+1) += C7*x(n-6)

y(n+2) += CI1* x(n+1)
—Y(N+2y +=C2Z*X(N)

y(n+2) += C3*x(n-1)
y(n+2) += C4*x(n-2)
y(n+2) += C5*x(n-3)
y(n+2) += C6*x(n-4)
y(n+2) += C7*x(n-5)

y(n#3) = Clix(n+2)” I [0ad T2, Toad x(2) ™

F(n¥3) ¥= C2*X(N+1) ~

y(n+3) += C3*x(n)

y(n+3) += C4*x(n-1)
y(n+3) += C5*x(n-2)
y(n+3) += C6*x(n-3)
y(n+3) += C7*x(n-4)

Figure 5-14. Generic Kernel For Quad ALU FIR

load C3, load x(n-3)
load C4, load x(n-4)
load C5, load x(n-5)
load C6, load x(n-6)
load C7, load x(n-7)

SC100 C Compiler

Optimization Techniques and Hints

The generic kernel requires four MACs and two parallel loads. Example 5-38 illustrates how the kernel in
Figure 5-14 isimplemented in asingle instruction.

Example 5-38. Single instruction quad ALU generic filter kernel

y(n) += C * DL y(n+l) += C* 2 y(n+2) += C* DB y(n+3) += C* D4
Load C, Copy D3 to D4, Copy D2 to D3, Copy D1 to D2, Load D1

To provide delay reuse, the delays are copied by using temporary variables D1, D2, D3 and D4 as adelay
line. Thisimposes a requirement on the kernel to perform two MACs and five move operations (two loads
and three copies) in asingle instruction.

Example 5-39 contains an example of C simulation code which implements the generic kernel shownin
Figure 5-14 on page 5-45.

Example 5-39. FIR_A4S4 quad ALU, quad sample C simulation code

#i ncl ude <pr ot ot ype. h>
#i ncl ude <stdio. h>

#define DataBl ockSize 40 // size of data bl ock to process
#define FirS ze 8 /1 nunber of coefficients in FIR

VWwr d16 Dat al n[Dat aBl ockSi ze] = {
328, 9830, 8192, -6553, -3277, 3277, 3277, -6553, -9830, 4915,
8192, -6553, 328, 9830, 4915, -6553, -3277, 3277, 3277, -9830,
4915, -3277, -9830, 8192, -6553, 328, 9830, -6553, 3277, 3277,
3277, 328, 9830, 4915, -3277, -9830, 8192, -6553, -6553, 3277

s

VWrdl6 Coef[FirSize] = {

3277, 6553, -9830, -6553, -4915, 3277, 8192, -6553
H
Word16 Del ay[FirSi ze+3];

#define IncMd(a) (a=((atl) % FirS ze+3)))
#defi ne DecMd(a) (a=((atFirSize+2) % FirSi ze+3)))

int main()
{
int DelayPtr;
Wor d32 sund, sun®, sunB, sun#;
VWr d16 Di, D2, O3, D4;
int i,j;

Del ayPtr = 0;// init delay ptr
for (i =0; i <DataBl ockSze; i +=4) {// do 4 sanples at a tine
Dataln[i]; Dechod(Del ayPtr);

Dat al n[i +1]; Dechbd(Del ayPtr);
Dat al n[i +2] ; Dechbd(Del ayPtr);

Del ay[Del ayPtr]
Del ay[Del ayPtr]
Del ay[Del ayPtr]

5-46 SC100 C Compiler

Guidelines for Using the Optimizer

Del ay[Del ayPtr] = Datal n[i+3];

suml
sun®
sunB
sund

I
eLeee

Il
Il
Il
Il

init
init
init
init

sumto zero
sumto zero
sumto zero
sumto zero

SC100 C Compiler

5-47

Optimization Techniques and Hints

D4 = Del ay[Del ayPtr]; In

03
b2

Del ay[Del ayPtr];
Del ay[Del ayPtr];

cMod(Del ayPtr);
| ncMod(Del ayPtr);
| nchMod(Del ayPtr);

for (j =0; j <FirSize/ 4 ; j++) {// evaluate FIR

DL = Del ay[Del

aybPtr];

I nchMbd(Del ayPtr);

suml
sun®
sun8
sund

D4 = Del ay[Del

= L_mac (
= L_mac (
= L_mac (
L_mac (

ayPtr];

I ncMod(Del ayPtr);

suml

sun® =
sun8 =
sungt =

D3 = Del ay[Del

aybPtr];

I ncMod(Del ayPtr);

suml
sun®
sun8
sund

D2 = Del ay[Del

= L_mac (
= L_mac (
= L_mac (
L_mac (

ayPtr];

I nchMbd(Del ayPtr);

suml

sun =
sunB =
sungt =

}
Dechbd(Del ayPtr);

printf("lndex: 9%,

out put :

/1 get delay

suml, Coef[4*j], DL)
sunk, Coef[4*j], D2)
sunB, Coef[4*j], DB);
sumt, Coef[4*j], D4)

/1 get delay

suml, Coef[4*j+1], D4);
sun?, Coef[4*j+1], D1);
sun8, Coef[4*j+1], D2);
sun#, Coef[4*j+1], DB);
/1 get next del ay
suml, Coef[4*j+2], D3)
sun, Coef[4*j+2], D4)
sun8, Coef[4*j+2], D1);
sumd, Coef[4*j+2], D2);
/1 get next del ay
suml, Coef[4*j+3], D2);
sun®, Coef[4*j+3], DB);
sun8, Coef[4*j+3], D4);
sun#, Coef[4*j+3], D1);

%\ n",i,round(suntl));

printf("Index: %, output: %l\n",i+1, round(sun));
printf("Index: %, output: %\ n",i+2, round(sun8));
printf("Index: %, output: %\ n",i+3, round(sund));
}
}
5-48 SC100 C Compiler

Guidelines for Using the Optimizer

5.4.3 General Hints

In addition to the specific techniques described in the previous sections, there are a number of general
guidelines that you should follow when writing source code, in order to assist the optimizer to produce the
most efficient results. These guidelines are described in the sections that follow.

5.4.3.1 Software pipelining

The optimizer implements sophisticated levels of software pipelining, saving you the need to introduce
software pipelining into your source code. It isimportant that you do not include any manual form of
software pipelining into your source code, as this can conflict with the algorithms used by the optimizer,
resulting ultimately in less efficient optimization.

Example 5-40 shows two forms of source code for the same loop. Thefirst version contains no pipelining,
and is the recommended source code form. Thiswill generate more efficient and smaller code than the
second version, which pipelinesthefirst iteration at the C level outside the loop. The type of manual
pipelining shown in the second version should be avoided.

Example 5-40. Avoiding software pipelining in source code

1. No pipelining (recommended)
L R=0;
for (J =0; J <SLEN J++)
L R=L mac(L_ R WBasi sVecs[J + (I * S LEN], Wnput[J]);

2. Manual pipelining (not recommended)
L R=L mult(WBasisVecs[| * S LEN, Wnput[Q]);
for (J =1; J < SLEN J++)
L R=L_nac(L_R WBasisVecs[J + (I * S LEN], Wnput[J]);

5.4.3.2 Passing and returning large structs

Instead of passing and returning large st r uct s using their value, use pointersto largest r uct s wherever
possible.

5.4.3.3 Arithmetic operations

Whenever you can, use constants instead of variables for shift, division, or remainder operations.

5.4.3.4 Local variables
Any local variable that you specify should be initialized before it is used.

SC100 C Compiler 5-49

Optimization Techniques and Hints

5.4.3.5 Resource limitations

The SC100 architecture provides atotal of 16 Dn registers and 16 Rn registers. If the number of active
variablesis greater than the number that the registers can accommodate, the compiler maps the extra
variablesto memory, resulting in less efficient code.

For best results, you should take account of these physical limitations when writing your source code. For
example, when preparing a set of instructions to execute in one cycle, remember that thereisarestriction
on the number of operands that can be used in a single cycle.

5.5 Optimizer Assumptions

The optimizer uses the information passed to it by the compiler, in order to ensure that the optimizations
applied during the various optimization stages do not affect the original accuracy of the program.

At the time that the compiler accumulates this information, it assumes that only two types of variables can
be accessed while inside a function, either indirectly through a pointer or by another function call:

e Global variables, meaning all variables within the file scope or application scope

e Local variables, whose addresses are retrieved implicitly by the automatic conversion of array
references to pointers, or explicitly by the & operator

If your programs conform to the standard ANSI/I SO version of C, this assumption does not affect your
code. If the code that you are compiling is not standard, and it violates this assumption, the optimization
process may adversely affect the behavior of the program.

To avoid unexpected results, and to ensure that your program executes correctly once optimized, follow
the coding guidelines listed below:

« Don't make assumptions based on memory layout when using pointers. For example, if x pointsto
the first member of a structure, x+1 may not necessarily point to the second member of the same
structure. Similarly, if y is defined as a pointer to the first declared variable in alist, do not assume
that y+1 points to the second variable in the list.

* When referencing an array, keep the references inside the array bounds.
* Ensurethat al the required arguments are passed to functions.

» When subscribing one array, don’t access another array indirectly. For example, if in the construct
x[y-x],x andy are the same type of array, the construct is equivalent to * (x+(y- x)) , whichis
equivalent to *y. Thus the construct actually referencesthe array y.

» When pointing to objects, don't reference outside the bounds of these objects. The optimizer
assumesthat all references of theform * (p+i) apply within the bounds of the variable(s) to which
p points.

« When the need arises for variables that are accessed by external processes, be sure to declare the
variablesasvol ati | e. Usethiskeyword judicioudly, asit may have adverse effects on
optimization.

5-50 SC100 C Compiler

Chapter 6
Runtime Environment

This chapter describes the startup code used by the SC100 C compiler, the layout and configuration of
memory, and the calling conventions which the compiler supports.

It contains the following sections:

Section 6.1, “ Startup Code,” provides details of the runtime code used for system initialization and
finalization.

Section 6.2, “Memory Models,” describes the two memory models supported by the compiler.

Section 6.3, “Memory Layout and Configuration,” describes the way that the compiler maps
memory, and explains how you can change this configuration to suit your requirements.

Section 6.4, “Calling Conventions,” describesthe stack-based and other calling conventionsthat the
compiler supports.

Section 6.5, “ Saturation,” provides details about saturation switches and saturation states.

6.1 Startup Code

The compiler runtime startup code consists of the following components:

Initialization code, which is executed when the program is initiated and before its main function is
caled

Finalization code, which controlsthe closedown of the application after the program’s main function
terminates

Entry points for low level 1/0 services
The interrupt vector table
Support for debugging tools

The entire startup code resides in assembly code files, named crt . asm and crt nosat . asm which are
located in the directory $SCTOOLS HOME/ src/rtlib/.crt. asmturnssaturation on and isthe default.
crtnosat. asm setsthe saturation mode bit to off. The object module for the filesislocated in the
directory $SCTOOLS_HOME/ | i b.

The compiler startup code contains two phases:

Bareboard startup code, which is used for programs which execute without the support of any
runtime executive or operating system. This phase resets the interrupt vector and initializes all
necessary hardware registers.

C environment startup code, which is a mandatory phase for al configurations. This phase
initializes the runtime structure of the application for the C environment, and includes the
finalization code used following termination of the program.

SC100 C Compiler 6-1

Runtime Environment

6.1.1 Bare Board Startup Code

The bare board startup phase assumes that no operating system or runtime executiveisrunning. It performs
the various actions which are normally carried out automatically by the operating system or runtime
executive, as follows:

1. Thereset interrupt vector is set to point to the system entry point __crt0_st art, asif the
system has just been reset. The interrupt vector table holds the addresses of all interrupt
handlers. Thefirst entry in thistableisthe system entry point. All other entriesin the interrupt
vector table point by default to the abor t function. Further information about interrupt
handlersis provided in Section 6.4.5, “Interrupt Handlers.” See Chapter 7, “Runtime
Libraries,” for more information about abor t and other runtime functions.

2. The hardware registers areinitialized as follows:
e Thefour modulo (M) registers (nD- nB8) are initialized to linear addressing.

» Thestatus register is set to an initial value taken from the linker command file used at link time.
Thisfileincludesalabel SR _set t i ng, which definestheinitial valueto be assigned to the status
register following system reset. Table 6-1 shows the default status register settings.

Table 6-1. Status Register Default Settings

Setting Type Value

Mode: Exception mode
Interrupt level: 7

Saturation: On

Rounding mode: NEAREST _EVEN

3. If the system includes atimer, the timer is activated.

4. Thebare board startup phase terminates by jumping to the C environment startup code entry
point, __ start.

6-2 SC100 C Compiler

Startup Code

6.1.2 C Environment Startup Code

The C environment startup phase is applicableto all programs. The entry point for thisphaseis___start.
This phase includes initialization code used prior to program start, and finalization code used after the
application terminates.

6.1.2.1 C environment initialization code
The following initialization actions are executed before the application starts:

1. Thememory map isset up and initialized. The stack pointer (SP) va ueisloaded into memory
by the stack start address, located at St ackSt ar t . Thislabel is defined in the linker
command file and used by the linker at link time. For further information about the memory
map, see Section 6.2, “Memory Models.”

2. If the - nr omoption has been specified in the shell command line, initialized variables are
copied from ROM into RAM. Thisoption isrequired for applications which do not use a
loader.

3. Thear gv and ar gc arguments are set up.
Interrupts are enabled. Until this point, interrupts have been disabled.
5. The application main procedure entry point is called using the function nai n.

6.1.2.2 Initialization of variables

If your system uses aloader, thiswill by default initialize all variables. In systemsthat do not include a
loader, it isimportant that you specify the - nr om option when you compile the final version of your
application, to ensure that the initialized variables are copied from ROM into RAM at startup.

Note: BeforeaC program executes, certain global variables may assumethe assignment of aninitial value
of zero. The compiler does not preinitialize variables automatically. You must ensurethat your code
includes explicit initialization of any variable that must have an initial value of zero.

6.1.2.3 C environment finalization code

On return from the application main function, the runtime function exi t iscalled. Thisterminatesany 1/0O
services which have not yet terminated, and stops the processor by issuing the st op instruction.

Note: Certain embedded real time applications never terminate. Such termination activities do not usually
pertain to embedded applications, but may be of use during early development and debugging
stages.

6.1.2.4 Low level I/O services

The C environment startup code includes the input and output of low level, buffered 1/0 services. The code
usescallsto__send and __recei ve inordertointerface with debugging tools and/or runtime systems.

SC100 C Compiler 6-3

Runtime Environment

6.1.3 Configuring Your Startup Code

If the default runtime setup does not match your configuration, you need to modify your startup code
accordingly.

To create your own runtime configuration code, follow the steps described below:

1. Makeyour own copy of the default startup file, cr t sc100. asm with aname of your choice,
as shown in the following example:

Example 6-1. Creating a new startup file

cp install-dir/src/rtlib/crtscl00.asm nyscl00.asm

2. Makethe required changes to the new file.
3. Assemble the modified file, as shown in Example 6-2.

Example 6-2. Assembling the modified startup file

asnscl00 -b -1 nysc100.asm

The generated object file has the same file name as the source file, and the extension . el n. In this
example, the object file generated ismysc100. el n.

4. Usethe modified file by specifyingthe-crt optioninthe shell command line, as shown
in Example 6-3, to ensure that the modified startup file is used at link time.

Example 6-3. Using the modified startup file

scc -crt nyscl00. el n ny-object-files.eln

6-4 SC100 C Compiler

Memory Models

6.2 Memory Models

The StarCore architecture supports big, small, and tiny memory models. These memory models save code
size and enhance performance. The following table provides information about each memory mode!:

Table 6-2. Memory Models

Memory . . —

Models Option Bit Description
Big memory -mb unsigned 32-bit | Does not restrict the amount of space allocated to addresses.
model addresses Uses a longer instruction that includes 32-bit instructions.
Small memory default unsigned 16-bit | The default model. Assumes that all addresses are 16-bit
model addresses immediate.
Tiny memory -mt sighed 16-bit | Assumes that all addresses are within the range of a signed
model addresses 16-bit immediate, effectively an unsigned 15-bit range.

The three compilation models alow the compiler to generate referencesto global and static data without
globa knowledge as to the variables final allocation address in memory. For each model the compiler
assumes that references to global and static data fit within the corresponding size implied by the model.
The expectation is that the linker will generate errors whenever a variable is resolved to not fit within the
range defined by the memory model.

6.2.1 Small and Tiny Memory Models

If the application issmall enough to allow all static datato fit into the lower 64K of the address space, then
more efficient code can be generated. This small memory model is the default and assumes that all
addresses are 16-hit immediate. The tiny memory model assumesthat all addresses are within the range of
asigned 16-bit immediate (effectively an unsigned 15-bit range).

6.2.2 Big Memory Model

The big memory model does not restrict the amount of space allocated to addresses. When the compiler
uses the big memory model to access a data object, whether static or global, it must use alonger instruction
that includes a 32-bit address. This operation requires an additional word, and as aresult it produces code
that is larger, and in some cases slower than a similar operation using the small or tiny memory models.

Example 6-4 illustrates the code sequence to generate the address of a global symbol in memory and the
seguence to reference the memory contents of a global symbol for each memory model.

SC100 C Compiler 6-5

Runtime Environment

Example 6-4. Big, small, and tiny memory models

Big memory model:

nove. | address, dO (3 16-bit words)
nmoveu. | #address, d0 (3 16-bit words)

Small memory model:

nove.| <address, dO
noveu. | #address, dO

16-bit words)
16-bit words)

—_~
wiN

Tiny memory model:

nmove. | <address, dO (2 16-bit words)
nmove. w #address, d0 (2 16-bit words)

Y ou can use certain instructions only in small memory mode. If < is omitted in conjunction with these
instructions, an error results. Example 6-5 shows the instruction brs et . w, which sets bit #zero in the
specified address, and is valid only in small memory models.

Example 6-5. Small and tiny memory mode instruction
brset . w #0001, <addr ess

Note: For maximum efficiency, it is recommended that you place data in the smallest possible locations
of the memory map (lower 32K or lower 64K), in order to enable the compiler to use small or tiny
memory modes.

6.2.3 Linker Command Files

The SC100 Linker refersto alinker command file at link time, for various runtime values, addresses and
labels. Three linker command files are provided, one for each memory mode.

Thesefiles are:
e crtscsnm cnd, used in small memory mode,
e crtsctnm cnd, used in tiny memory mode, and

e crtscbnmm cnd, used when big memory modeis selected.
All threefilesarelocated inthei nstal | - di r/ et ¢ directory.

6-6 SC100 C Compiler

Memory Layout and Configuration

6.3 Memory Layout and Configuration

The SC100 default memory layout isa single linear block which is divided into data and code areas.
C programs generate code and data in sections. The compiler places each of these sectionsin itsown
continuous space in memory.

The default layout of the SC100 memory isillustrated in Figure 6-1

<« — - TopOfMemory
High addresses
ROM
____________ '@ — - ROMStart
____________ @ — - TopOfStack

____________ @' — - StackStart
Code
____________ @~ — - CodeStart
Global/static data
____________ ¢ — - DataStart
Interrupt vector table
Low addresses < — -0

Figure 6-1. SC100 Default Memory Layout

All three memory models use the same default layout, but with different default values that define the
distribution of the memory areas, as shown in Table 6-3, Table 6-4, and Table 6-5 on page 6-8. Y ou can
change these default values, and configure the memory map to meet your specific requirements, as
described in Section 6.3.3, “ Configuring the Memory Map.”

The layout and functionality of the stack and heap are common to all the memory models, and are
described in the sections that follow.

SC100 C Compiler 6-7

Runtime Environment

The default memory map values for the small memory model are listed in Table 6-3. These values are held

inthefilecrt scsmm cnd.

Table 6-3. Small Memory Model Default Values

From Default value To Default value Contents

0 Ox1ff Interrupt vector table
DataStart 0x0200 DataStart+DataSize-1 Global and static variables
CodeStart 0x100000 StackStart-1 Program code

StackStart 0x200000 TopOfstack Stack and heap
ROMStart 0x300000 TopOfMemory ROM

Table 6-4 lists the default memory map values for the big memory model. These values are held in thefile

crtscbmm cnd.

Table 6-4. Big Memory Model Default Values

From Default value To Default value Contents

0 Ox1ff Interrupt vector table
DataStart 0x0200 DataStart+DataSize-1 Global and static variables
CodeStart 0x100000 StackStart-1 Program code

StackStart 0x200000 TopOfstack Stack and heap
ROMStart 0x300000 TopOfMemory ROM

Table 6-5 lists the default memory map values for the tiny memory model. These values are held in thefile

crtsctnmm cnd.

Table 6-5. Tiny Memory Model Default Values

From Default value To Default value Contents

0 0 Oxiff Interrupt vector table
DataStart 0x200 DataStart+DataSize-1 Global and static variables
CodeStart 0x100000 StackStart-1 Program code

StackStart 0x200000 TopOfstack Stack and heap
ROMStart 0x300000 TopOfMemory ROM

6.3.1 Stack and Heap Configuration

The heap and stack are alocated from the same area of memory and must be contiguous. The compiler
always treats the stack and heap as a continuous area of memory. The other sections of memory can be

distributed, and there are no restrictions relating to their location.

6-8

SC100 C Compiler

Memory Layout and Configuration

6.3.1.1 Runtime stack

The compiler allocates an area of memory to the runtime stack, which is used for the following purposes:
* Allocation of local variables
e Passing argumentsto functions
e Saving function return addresses
e Saving temporary results

The stack is alocated in the area above the space used for code, and grows in an upward direction toward
the top of memory. The compiler uses the SP register to manage this stack.

The SC100 architecture includes two stack pointers:
* NSP, used when the processor is running in Normal mode
e ESP used when the processor is running in Exception mode
Asshown in Table 6-1 on page 6-2, the default mode at initialization is Exception mode.

The compiler makes no assumptions about which stack pointer to use, and uses the pointer for the current
processor mode to point to the address at the top of the stack.

When the system isiinitialized, the stack pointer for the current mode is set by default to the address of the
location directly after the code area, as defined in St ack St art in the linker command file. The actual
address of the stack is determined at link time.

The stack pointer for the current processor mode is automatically incremented by the C environment at the
entry to afunction. This ensures that sufficient space is reserved for the execution of the function. At the
function exit, the stack pointer is decremented, and the stack is restored to its previous size prior to
function entry. If your application includes assembly language routines and C code, you must ensure at the
end of each assembly routine that the current stack pointer is restored to its pre-routine entry state.

Note: If you change the default memory configuration, remember to allow sufficient space for the stack
to grow. If astack overflow occurs at runtime, thiswill cause your program to fail. The compiler
does not check for stack overflow during compilation or at runtime.

6.3.1.2 Dynamic memory allocation (heap)

The runtime libraries supported by the compiler include a number of functions that enable you to allocate
memory dynamically for variables. See Chapter 7 for details of the runtime libraries supported. Since C
does not support the dynamic allocation of memory, the compiler assigns an area of memory as a heap for
this purpose.

The compiler allocates memory from a global pool for the stack and the heap together. The lower address
of the area assigned to the stack and heap isdefined in St ack St ar t, in the linker command file. The heap
starts at the top of memory, and is allocated in a downward direction toward the stack.

Objects that are dynamically allocated are addressed only with pointers, and not directly. The amount of
space that can be allocated to the heap is limited by the amount of available memory in your system.

To make more efficient use of the space allocated to data, you can use the heap to allocate large arrays,
instead of defining them as static or global.

For example, adefinition such asstruct | arge arrayl[80]; can be defined using a pointer and the
mal | oc function, asillustrated in Example 6-6.

SC100 C Compiler 6-9

Runtime Environment

Example 6-6. Allocating large arrays from the heap

struct large *arrayl,;
arrayl = (struct large *)mal | oc(80*si zeof (struct large));

6.3.2 Static Data Allocation

When you compile your application without cross-file optimization, the allocations for each file are
assigned to different sections of data memory. At link time these are dispatched to different addresses.

When compiling with cross-file optimization, the compiler uses the same data section for all alocations. If
you want to override this and to instruct the compiler to use non-contiguous data blocks, you can edit the
machine configuration file to define the exact memory map of the system that you want to use. For more
details, see Section 6.3.4, “Machine Configuration File.”

6.3.3 Configuring the Memory Map

The default values in the SC100 memory map are easily configurable, by modifying the linker command
file. When making such changes, it isimportant that you ensure that the code size and data size values that
you specify do not overlap.

The stack and the heap must be always be located together in one contiguous area of memory. The
compiler makes no assumptions about the layout of the other sections of memory, which can be split and
distributed over non-contiguous parts of memory, as required.

Section 6.3.3.1, “Memory map configuration example,” provides an example of arequirement for a
modified memory map configuration, and describes the changes to be defined in the linker command file
for this sample configuration.

Note: If you choose not to modify the default command file, but rather save the changesin anew
command file instead, use the - memoption to pass the new command file to the linker. If you use
the- XI nk optionto do this, both the new command file and the default command filewill be passed
to the linker, resulting in errors.

6.3.3.1 Memory map configuration example

This example assumes that you have a system with non-contiguous memory, and would like to configure
the memory as follows:

» All code placed in external memory (addresses 0x 10000000 through 0x10100000)
e All dataplaced in internal memory

e Somelocal memory reserved for the most frequently used functions and overlays (addresses
0x10000 through 0x20000)

e All dataplaced in the lower 64K addresses, in order to be able to use the small memory model
compilation mode

The memory map that meets these requirements is shown in Example 6-7:

Example 6-7. Modified memory map configuration

From To Contents

0 Ox1ff Interrupt vectors

6-10 SC100 C Compiler

Memory Layout and Configuration

Example 6-7. Modified memory map configuration

0x200 Oxf f fd Global and static variables
0x10000 Ox1f fff Local code

0x20000 Ox7f ff 0 Stack and heap

0x80000 oxfffff ROM

0x10000000 Ox100fffff External code

Example 6-8 showsthe definitionsinthecr t scsnmm cmd file that specify this memory map configuration:

Example 6-8. Modified memory configuration in the linker command file

. provi de _DataS ze, 0x10000 ; Sets the data size.
.provide _CodeStart, 0x10000000 ; Sets the | oader code start address.
.provide _StackStart, 0x20000 ; Sets the stack start address;

; the stack grows upwards.
.provide TopOf Stack, Ox7fff0 ; The heap start address;

; the heap grows downwards.
.provide ROWBtart, 0x80000 ; Sets the ROM start address.

6.3.4 Machine Configuration File

The machine configuration file contains the following:

« Information about data types and alignment requirements, used by the compiler for reference. This
data must not be changed.

« Memory structure information, used by the compiler to allocate variables in the data sections of
memory. Thisinformation can be modified if required.

By default, the compiler usesthefile pr oc. confi g, locatedinthei nst al | - di r/ et ¢ directory. A
different machine configuration file can be specified using the - nc option in the shell command line.

The SC100 memory structure consists of physical and logical memory maps, as follows:

e Physical memory is divided into several memory spaces. Each memory space is a physical entity
consisting of adata bus and an address bus. A physical memory space isdefined in terms of itssize
inwords and the width of its address bus, and comprises bl ocks of words with contiguous addresses,
described as physical memory areas.

e Logical memory areas are defined as blocks of memory words with contiguous addresses. These
words are used by the compiler asif they werein physical memory areas. The addresses of the
logical areas are mapped as offsets to physical memory addresses at link time.

This dual memory map structure provides a high degree of flexibility during the loading of application
code.

6.3.4.1 Defining the memory configuration

Each memory space is defined individually in the machine configuration file, by specifying a space
identifier and a description, comprising:

» Memory space type: program or data.
e Word size, in bytes.
« Arealigt, defining one or more logical areas.

SC100 C Compiler 6-11

Runtime Environment

e Theaddressesin the logica areas, as positive integers, used as offsets to physical memory areas.
e Physical areatype: single-port RAM (r ansp), dual-port RAM (r andp) or ROM (r om).

» Attached spaces (optional). Thisis used for dual-port RAM only, when r andp isthe defined area
type, to specify the two memory spaces. It isimportant that the code ensures address consi stency
between the corresponding spaces.

The syntax for defining amemory spaceis as follows:

space definition:
defi ne space <space identifier>:
space_t ype;
wor d_si ze;
area |ist;
end define

space_t ype:

program| data
wor d_si ze:

word : byte nunber

area_|ist:
area | area list area
ar ea:
address_value .. address_value : area_type opt_attached_spaces ;

area_type:
ransp | ramdp | rom
opt _attached_spaces:
[space_nunber , space_nunber]

In Example 6-9, a one-word data space is defined, providing one logical areathat can be used for the
allocation of variables.

Example 6-9. Defining a data memory space

defi ne space data O :

dat a;

word : 2;

0x0000 .. Oxfffff : ramsp;
end define

Example 6-10 shows the definition of a 2-word program space in ROM.

6-12 SC100 C Compiler

Memory Layout and Configuration

Example 6-10. Defining a program memory space

defi ne space pgm:

pr ogr am

word : 4;

0x0000 .. Ox3fff : rom
end define

At link time, these areas are mapped to the relevant physical memory space, and the actual addresses are
calculated as offsets to the physical space starting address.

A data space can be divided into multiple logical areas, as shown in Example 6-11. When the compiler
executes with cross-file optimization, it divides memory into these logical areas, and allocates variables
accordingly.

Example 6-11. Defining multiple memory spaces

define space data 1 :
dat a;
word : 2;
0x0000 .. Ox3fff : ransp;
0x0800 .. Oxffff : ramdp [data_O,data_1];
0x10000 .. Ox13fff : ransp;
0x40000 .. Ox47fff : ransp;
end define

Note: If you define new memory spacesin the machine configurationfile, it isimportant that you al so add
these space definitions in the linker command file, to enable the linker to locate them at link time.

6.3.5 Application Configuration File

The application configuration file contains information about the interaction between the application
software and the hardware. This file indicates to the compiler how to compile specific software unitsin
order to ensure efficient sharing of hardware resources, in particular memory space. Thisinformation can
be modified, to suit the requirements of your application.

The default application configuration fileis named mi ni mal . appl i , and islocated in the
i nstall-dir/etc directory. A different application configuration file can be specified, using the
- ma option.

Thisfile contains the following functional section types:

» Schedule section, which defines the entry points for the software units in the application, and their
overlay capabilitiesfor local variables. See Section 6.3.5.2, “ Schedule section,” for details.

» Binding section, which specifies the links between software interrupt routines and hardware
interrupt vectors, and between software-defined variables and fixed memory addresses.
See Section 6.3.5.3, “Binding section,” for details.

e Overlay section, which specifies the overlay capabilities of global variables. See Section 6.3.5.4,
“Overlay section,” for details.

SC100 C Compiler 6-13

Runtime Environment

6.3.5.1 File structure and syntax

More than one section of each type can be included in the file. The order in which the sections are defined
in the file is unimportant. Each of the section typesis optional and can be omitted.

The syntax of the application configuration fileis as follows:

translation_unit:
header section
configuration section_|ist
end configuration

header secti on:
opt _versi on
opt _version;
version string_content

section list:
section | section_|ist section
section:
schedul e_section | binding_section | overlay_section

6.3.5.2 Schedule section

The schedul e section defines the entry point structure of an application, by specifying a”call tree". The call
tree root is a C function name that defines the starting entry point for an application. Each node in the call
tree is the name of an entry point of a unit that can be called during the execution of the application.

Each call tree node is defined asa call tree item, and isgiven act number that is unique for the
application. A call tree item can be one of three types:

e Background task, identifying the main entry point, defined as mai n

e Interrupt handler, identifying an interrupt routine entry point, defined asi t _ent ry, with anumber
that is used by the binding section to link to the associated hardware interrupt vector

« Task entry point, defined ast ask_ent ry, for example, an operating system task

The schedule section can optionally include an overlay specification, which informs the compiler which
groups of local variables can use the same memory location during execution of the application. The
compiler is able to overlay groups of local variables automatically, but only when it is clear that the two
sets of variables do not share the same lifetime, and are therefore not active simultaneously. By specifying
overlaysin thisfile, you provide the necessary information in advance to help the compiler make more
efficient use of memory space.

The overlay specification in the schedule section relates to local variables only. Overlays for global
variables are specified in the overlay section, as described in Section 6.3.5.4, “ Overlay section.”

6-14 SC100 C Compiler

Memory Layout and Configuration

The syntax of the schedule section is as follows:

schedul e list:

schedul e_el nt | schedul e |ist schedul e_el nt
schedul e_el nt:

call _tree list ; opt_overlay spec
call tree list:

call tree item]| call tree list call _tree item

call tree_item

ct [int_constant] : main = ident ;
ct [int_constant] : it_entry int_constant = ident ;
ct [int_constant] : task entry = ident ;

opt _overl ay_spec:

overlay = entry overlay list ;
entry overlay list:

[group_list]
group_list:

group | group_list, group

gr oup:

[entry nunber |ist]
entry nunber |ist:

entry nunber | entry nunber list, entry nunber
entry_ nunber:

ct[int_constant] | int_constant

SC100 C Compiler 6-15

Runtime Environment

Example 6-12 defines two entry points, in addition to mai n. The functiont ask1() isdefined as atask
entry point and the functioni nt _ent ry() isdefined as an interrupt handler.

Note that defining afunction as an interrupt handler in the application configuration file is equivalent to
using #pr agma i nt er r upt inthe source file. For more details, see Section 6.4.5, “Interrupt Handlers.”

Example 6-12. Defining additional entry points for an application

configuration

schedul e
ct[O] : main = nain;
ct[1] : task entry = _taskl
ct[2] : it_entry O = _int_entry;
end schedul e
bi ndi ng
place __ stackX on space 0 at 1
end bi ndi ng

end configuration

6.3.5.3 Binding section

The binding section performs the following functions:

e Assignment of fixed memory addressesto variables. A full memory addressis specified with a
memory binding directive, using the following syntax:
menory_bi ndi ng_di recti ve:
place full _ident on space_identifier at nunber

« Specification of the links between fixed interrupt entries and hardware interrupt vector addresses.
Aninterrupt binding directiveisused to specify aninterrupt entry number, in the range 0-15, and the
corresponding hardware vector number, in the range 1-16, using the following syntax:
it_binding directive:
place it_vector interrupt_number on space_identifier at vector_nunber

The syntax of the binding section is as follows:

bi ndi ng_di recti ve:
menory_binding directive | it_binding_directive

binding directive list:
bi nding_directive binding directive list ; binding_directive

bi ndi ng secti on:
bi ndi ng
bi nding directive |ist
end bi ndi ng

6-16 SC100 C Compiler

Memory Layout and Configuration

In Example 6-13, the location of global variable memisfixed at absolute address 0x2000:

Example 6-13. Placing a variable at an absolute location

configuration

schedul e
ct[O] : main = nain;
ct[1] : it_entry O = _int_entry;
end schedul e
bi ndi ng
place __ stackX on space 0 at 1
pl ace _nemon space 0 at 0x2000;
end bi ndi ng

end configuration

6.3.5.4 Overlay section

The overlay section specifies how the compiler should overlay global variablesin order to further reduce
the amount of memory required for data. As with local variables, in many cases the compiler can
automatically detect that two data objects do not share the same lifetime and as a result, the memory
alocated to these objects can be shared. This feature is needed for cases where the compiler cannot
identify statically that the object lifetimes of global variables do not conflict.

Defining the overlay specification for global variables includes the following:

e Grouping the global variablesinto sets that can share the same memory space. Inthe overlay section
syntax, the full identity is specified for each global variable, or list of variables, and defined as
synbol _Iist.

« Defining each set of global variablesasasynbol _gr oup, associated withasynbol _|i st andan
identifying group number.

» Specifying compatibility clauses that define which symbol groups can be overlaid, using the
keyword di scer n.

« Specifying alist of compatibility clauses to indicate which symbol groups in the application can
share the same memory space.

The syntax of the overlay section is as follows:

overl ay section:
overl ay
opt _overl ay_spec
conpatibility list
end overl ay

synbol _list:
full _ident | synbol list, full _ident

synbol _gr oup:
SG [nunber] = [synbol list] ;

SC100 C Compiler 6-17

Runtime Environment

synbol _group_list:
synbol _group | synbol _group_list synbol _group

sg_ref:
SG [nunber]

sg_list:
sg_ref | sg_ list, sg_ref

conpatibility_cl ause:
discern_sg ref : sg list ;

conpatibility list:
conpatibility clause | conpatibility list conpatibility_clause

Example 6-14 shows an overlay section that specifies that the application will never access the two global
arrays, arr 1 and ar r 2, at the same time, and they can therefore share the same physical memory location.

Example 6-14. Defining global variable overlays

configuration
schedul e
ct[O] : main = nain;
end schedul e
bi ndi ng
place __ stackX on space 0 at 1
end bi ndi ng

overl ay

sg[0] =[_arr1];

sg[1l] =[_arr2];

di scern sg[0] : sg[1];
end overl ay

end configuration

6-18 SC100 C Compiler

Calling Conventions

6.4 Calling Conventions

The compiler supports astack-based calling convention. Additional calling conventions are also supported.
Calling conventions can be mixed within the same application.

Specific calling conventions can be enforced using pragmas. For further information about the use of
pragmas for this purpose, refer to Section 3.4.5, “Pragmas,” on page 3-52.

When compiling in separate compilation mode, non-static functions use the stack-based calling
convention.

6.4.1 Stack Pointer

The SP register serves as the stack pointer, which points to the first available location. The stack direction
is toward higher addresses, meaning that a push isimplemented as (sp) +. The stack pointer must always
be 8-byte aligned.

6.4.2 Stack-Based Calling Convention

The following calling conventions are supported:

e Thefirst (Ieft-most) function parameter is passed in d0 if itisanumeric scalar orinr 0 if itisan
address parameter, regardless of its size. The second function parameter ispassed ind1l if itisa
numeric scalar, orinr 1 if it isan address parameter, regardless of itssize. Theremaining parameters
are pushed on the stack. Long parameters are pushed on the stack using little endian mode, with the
least significant bitsin the lower addresses.

e Structures and union objects that can fit in aregister are treated as numeric parameters, and are
therefore candidates to be passed in aregister.

e Numeric return values are returned in d0. Numeric address return values are returned inr 0.
Functions returning large structures, meaning structures that do not fit in a single register, receive
and return the returned structure addressin r 2. The space for the returned object is allocated by the
caller.

« Functions with avariable number of parameters allocate all parameters on the stack.

e Parameters are aligned in memory according to the base parameter type, with the exception of
characters and unsigned characters that have a 32-bit alignment.

The following registers are saved by the caller: dO- d5, r 0- r 5, n0- n3.
The following registers are saved by the caleeg, if actually used: d6-d7,r6-r7.

The compiler assumes that the current settings of the following operating control bits are correct:
e Saturation mode
* Round mode
» Scalebits

The application is responsible for setting these mode bits correctly.

SC100 C Compiler 6-19

Runtime Environment

Example 6-15 shows two function calls and the parameters that are allocated for each call.

Example 6-15. Function call and allocation of parameters

Function call:

foo(int al, struct fourbytes a2, struct eightbytes a3, int *a4)
Parameters:

al - in dO

a2 - indl

a3 - in stack

a4 - in stack

Function call:

bar(long *bl, int b2, int b3[])
Parameters:

bl - inr0

b2 - in dl

b3 - in stack.

The stack-based calling convention must be used when calling functions that are required to maintain a
calling stack.

The compiler isable to use optimized calling sequences for functions that are not exposed to external calls.
Local and formal variables are alocated on the stack and in registers.

Table 6-6 summarizes register usage in the stack-based calling convention.
Table 6-6. Register Usage in the Stack-based Calling Convention

Register Used as Caller Saved Callee Saved
do First numeric parameter +

Return numeric value
di Second numeric parameter +
d2-d5 +
d6- d7 +
d8- d15 +
ro First address parameter +

Return address value
ri Second address parameter +
r2 Big object return address +
r3-r5 +
reé Optional argument pointer +
r7 Optional frame pointer +
n0-n3, nD-nB8 +

6-20 SC100 C Compiler

Calling Conventions

6.4.3 Optimized Calling Sequences

A stack-less convention may be used when calling functions that are not reentrant, if this technique
generates more efficient code than other conventions.

This convention will be used only if the function is not visible to external code.

When using this calling convention, local variables may be alocated statically, meaning not on a stack.
Functions with mutually exclusive lifetimes may share space for their local variables.

Actual parameters are placed by the calling function at the locations alocated for the formal parametersin
the called function. The compiler may use registers and memory locations as required when allocating
locations for the formal parameters.

Under this calling convention, all registers are classified as caller-saved.

Return values from functions are placed in the space allocated for the function return value in the calling
function. The compiler may use aregister or a memory location as the space for the function return value.

SC100 C Compiler 6-21

Runtime Environment

6.4.4 Stack Frame Layout

The stack pointer pointsto the top (high address) of the stack frame. Space at higher addresses than the
stack pointer is considered invalid and may actually be unaddressable. The stack pointer value must always
be amultiple of eight.

Figure 6-2 showstypical stack frames for a function, indicating the relative position of local variables,
parameters and return addresses.

High addresses

- - - _ __ _ ___ _e Stack
Pointer
Outgoing parameters overflow

Local variables

Saved registers

Return address

Incoming parameters

Low addresses

Figure 6-2. Stack Frame Layout

The caller must reserve stack space for return variables that do not fit in registers. Thisreturn buffer areais
typically located with the local variables. This space is typically allocated only for functions that make
calls that return structures. Beyond these requirements, afunction is free to manage its stack frame as
necessary.

The outgoing parameter overflow block islocated at the top (higher addresses) of the frame. Any incoming
argument spill generated for var ar gs and st dar gs processing must be at the bottom (low addresses) of
the frame.

The caller puts argument variables that do not fit in registers into the outgoing parameter overflow area. If
al argumentsfit in registers, thisareais not required. A caller hasthe option to alocate argument overflow
space sufficient for the worst case call, use portions of this space as necessary, and/or |eave the stack
pointer unchanged between calls.

6-22 SC100 C Compiler

Calling Conventions

Local variables that do not fit into the local registers are allocated space in the local variables area of the
stack. If there are no such variables, thisareais not required.

6.4.5 Interrupt Handlers

Functions which reguire no parameters and return no result can be designated as interrupt handler
functions. The process of creating an interrupt handler function includes:

« Defining the function as an interrupt handler
e Linking the function to the appropriate interrupt vector entry
An interrupt handler can be be defined in one of two ways:

e Using#pragma i nterrupt inthe source code. For more detail about this pragma, refer to
Section 3.4.5.3.4, “Defining afunction as an interrupt handler,” on page 3-56.

« Defining aninterrupt entry point in the application, by editing the schedul e section of the application
configuration file, as described in Section 6.3.5, “ Application Configuration File.”

To create thelink between the function and the interrupt vector entry, you can use any one of the following
options:

« Inthe codethat callsthe function, place a call to the handler function in the interrupt vector entry.

e Usethesi gnal . h library functionto insert acall to the interrupt handler function into the required
interrupt vector entry. For syntax details, see Section 7.8, “ Signal Handling (signal.h),” on page
7-11.

e If thefunctionisvery small, you can embed it in the interrupt vector entry, by modifying the startup
codefile, crt. asm The size of each interrupt vector entry is 64 bytes. With this option, thereis no
need for an explicit call from the vector to the function.

Interrupt handler functions always follow the stack-based calling convention. When an interrupt function
is called, the interrupt handler saves all registers and all other resources that are modified by the function.
Upon returning from the function all registers and hardware loop state saved at entry are restored to their
original state.

Local variables are saved on the stack. Interrupt handlers that are known to be non-interruptible may also
alocate data statically.

Return from interrupt is implemented using an RTE instruction.

6.4.6 Frame Pointer and Argument Pointer
The compiler does not use aframe pointer or an argument pointer.

If, however, the use of aframe pointer or an argument pointer is required by external code, r 7 may be
alocated as aframe pointer andr 6 as an argument pointer. When these registers are allocated as frame
pointer and/or argument pointer they should be saved and restored as part of the function prolog/epilog
code.

SC100 C Compiler 6-23

Runtime Environment

6.4.7 Hardware Loops

All hardware loop resources are available for use by the compiler. It isassumed that no nesting occurs
when entering afunction. As aresult, afunction may use all 4 nesting levelsfor its own use. An additional
side effect of this assumption isthat loops that include a function call as part of the loop code cannot be
implemented using hardware loops, unless the compiler can infer the nesting level of the called function
from static variables known at compilation time.

L oops are nested beginning with loop counter 3 at the innermost nesting level.

6.4.8 Operating Modes

The compiler makes the following assumptions regarding runtime operating modes and the machine state:

e All modulo (M) registers (nD- nB) are assumed to contain the value O (linear addressing). If the use
of an M register is required, the using function must restore the M register to the value 0 before
returning or before calling another function.

» No specific settings are assumed for the operating mode settingsin the EMR register. The compiler
assumes that the default settingsin the startup code, including saturation modes, rounding mode and
scale bits, are set by the user. You can control and change these operating modes during execution
of the application. Refer to the SC100 architecture documentation for further details.

6-24 SC100 C Compiler

Saturation

6.5 Saturation

By default, saturation is turned off; however, there is a switch option that allows you to turn saturation on.
It isimportant that you intricately know your program in order to get the desired results on overflow.
Choose the compilation model based upon your program.

Use acombination of the-fracti onal and-no_over f | owoptionsto tell the compiler the overflow
reguirements of your particular program. - f r act i onal indicatesthat your code contains intrinsics that
rely on saturation when overflowing. The compiler gives an error message to standard error whenever it
finds an intrinsic in the compilation module and the - f r act i onal switch isnot specified. The
-no_over f | owoption isan optimization that allows the compiler to relax the definition of unsigned
integers overflowed by saturating rather than modular wrap-around behavior.

6.5.1 Saturation switches

The-fractional switch combined withthe- no_over f | ow switch determines the model the compiler
uses to generate code for the SC140. Combined, the two switches give the compiler three approaches to
generate code:

» default: saturation mode-bit off, generating non-intrinsic code that usesthe saturation bit. Whenyou
donotuse-fractional and/or-no_overf | ow the compiler automatically uses this default
setting. Thisisthe most efficient and correct for generic ANSI/I SO C codesthat do not use fractional
operations.

« -fractional : saturation mode-bit on, generating non-intrinsic code that does not rely on
saturation bit. This generates intrinsic code that has the proper saturation overflow semantics and
non-intrinsic code that correctly conformsto ANSI/ICO C overflow rules. Thisincursaperformance
degradation over the intrinsic code today, but will be correct.

e -fractional and-no_overf | ow: saturation mode-bit on, generating non-intrinsic code that uses
the saturation bit. This code does not honor the ANSI/ICO C defined behavior of overflow on
unsigned values as they will saturate on overflow. This may result in an incorrect program. The
-fractional and-no_over f | owcombination ismost efficient on C code that usesthefractional
intrinsics. Use this combination for compatibility with prior StarCore compiler rel eases.

6.5.2 Saturation states

The following table illustrates the various saturation states based on the combinations of the compiler
switches. For example, if you have - f r act i onal turned off, and - no_over f | owturned on, then the
saturation bit is off, and the compiler’s performance is fast.

Option Combinations Results
-fractional -no_overfl ow sat_bit sr{2} Compiler performance
off off off fast
off on off fast
on off on slow
on on on fast

SC100 C Compiler 6-25

Runtime Environment

6-26 SC100 C Compiler

Chapter 7
Runtime Libraries

This chapter describes the C libraries and 1/0 libraries that the SC100 C compiler supports. Each tablein
this chapter is organized in alphabetical order, according to the file, function, or constant name in the first
column in the table.

Table 7-2 summarizes the | SO standard C libraries that the compiler supports.
Table 7-1. Supported ISO Libraries

Header file Description Section Page
ctype.h Character Typing and Conversion 7.2 7-2
float.h Floating Point Characteristics 7.3 7-4
limts.h Integer Characteristics 7.4 7-8
| ocal e. h Locales 7.5 7-8
mat h. h Floating Point Math 7.6 7-9
setjnmp. h Nonlocal Jumps 7.7 7-11
signal . h Signal Handling 7.8 7-11
stdarg. h Variable Arguments 7.9 7-11
stddef. h Standard Definitions 7.10 7-12
stdio.h 1/0O Library 7.11 7-12
stdlib.h General Utilities 7.12 7-15
string.h String Functions 7.13 7-17
tine.h Time Functions 7.14 7-20

The non-1SO C library supported by the compiler is shown in Table 7-2. This library contains the built-in
intrinsic functions supplied with the compiler.

Table 7-2. Supported Non-ISO Libraries

Header file Description Section Page

prototype. h Built-in Intrinsic Functions 7.15 7-21

SC100 C Compiler 7-1

Runtime Libraries

7.1 Providing Runtime Libraries

Starting with the StarCore Tools release 2.2.0, the compiler includes the sources and the makefile
necessary for rebuilding the runtime libraries. The default libraries are located in thel i b directory, which
residesin the SW Tools directory (ex: $ SC100_HOVE/ | i b). Thisl i b directory hasthe libraries
compiled with the small (- Os) optimization. Another set isprovidedinthel i b_debug directory that were
built with the debug (- g) option. When using the compiler, please note that the runtime libraries that are
used (linked during compilation of atarget source program) are the onesinthel i b directory.

7.1.1 Using Libraries with debug
To use libraries with debug:

1. Renametheli b directorytolib_small .
2. Renamethel i b_debug directory tol i b.

7.1.2 Building the Libraries

The following example shows the steps for rebuilding the libraries under solaris with -O2 optimization.

1. Source the appropriate env.sh, for example:
$ source /sw_tool s-2.x.x/env.sh

2. Changethedirectory tothertli b directory, where Make file resides.
$ cd /sw tools-2.x.x/src/rtlib/

3. Edit the CFLAGS variable in Makefile to match your desired compiler options.
CFLAGS = -2

4. Run Make.
$ nmake instal

Note: Thelibrariesare copiedintothel i b directory by the Make install command, thereby overwriting
any exigting librariesin thel i b directory. You can only build the libraries in the Solaris
environment.

7.2 Character Typing and Conversion (ctype.h)

Thect ype. h library contains the following function types:
e Testing functions
e Conversion functions

7-2 SC100 C Compiler

Character Typing and Conversion (ctype.h)

7.2.1 Testing Functions
Table 7-3 lists the testing functions that the compiler supports.

Table 7-3. Testing Functions

Function Purpose

int isalnunm(int) Tests for i sal pha orisdigit

int isal pha(int) Tests for i supper ori sl ower

int iscntrl(int) Tests for any control character

int isdigit(int) Tests for decimal digit character

int isgraph(int) Tests for any printing character except space
int islower(int) Tests for lowercase alphabetic character

int isprint(int) Tests for any printing character including space
int ispunct(int) Tests for any printing character not space and noti sal num
int isspace(int) Tests for white-space characters

int isupper(int) Tests for uppercase alphabetic character

int isxdigit(int) Tests for hexadecimal digit character

7.2.2 Conversion Functions

Table 7-4 lists the conversion functions that the compiler supports.

Table 7-4. Conversion Functions

Function

Purpose

int tol ower(int)

i nt toupper(int)

Converts uppercase alphabetic character to the equivalent lower case character

Converts lowercase alphabetic character to the equivalent uppercase character

SC100 C Compiler

7-3

Runtime Libraries

7.3 Floating Point Characteristics (float.h)

The compiler represents floating point numbers using |EEE format (ANSI/IEEE Std 754-1985). Only
single precision floating point format is supported.

The contentsof f | oat . h arelisted in Table 7-5.
Table 7-5. Contents of File float.h

Constant Value Purpose

FLT D G 6 Number of decimal digits of precision

DBL_DI G 15

LDBL_DI G 15

FLT_EPSI LON 1.19209290E-07F Minimum positive number X such that 1.0 + x does not
DBL_EPSI LON 2.2204460492503131E-16 equal 1.0

LDBL EPSI LON 2.2204460492503131E-16L

FLT_MANT DI G
DBL_MANT DI G
LDBL_MANT DI G

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP
FLT_MAX

DBL_ MAX
LDBL_ MAX

24
53
53

38
308
308

128
1024
1024

3.40282347E+38F
1.7976931348623157E+308
1.7976931348623157E+308L

Number of base-2 digits in the mantissa

Maximum positive integers n such that 10" is
representable

Maximum positive integer n such that 2" 1 is
representable

Maximum positive floating point number

FLT_M N_10_EXP (-37) Minimum negative integer n such that 10" is
DBL_M N_10_EXP (-307) representable

LDBL_M N_10_EXP (-307)

FLT_M N_EXP (-125) Minimum negative integer n such that 2™lis
DBL_M N_EXP (-1021) representable

LDBL_M N_EXP (-1021)

FLT_M N 1.175494351E-38F Minimum positive number

DBL_M N 2.2250738585072014E-308

LDBL_M N 2.2250738585072014E-308L

FLT_RADI X 2 Floating point exponent is expressed n radix 2.
FLT ROUNDS -1 Floating point rounding is to nearest even number.
7-4 SC100 C Compiler

Floating Point Characteristics (float.h)

7.3.1 Floating Point Library Interface (fltmath.h)

This header file defines the software floating point library interface. Most of these functions are called by
the code generator of the compiler for floating point expression evaluation. They may also be called
directly by user code.

The floating point library supports the full IEEE-754 single-precision floating point standard.
Three configuration parameters and one status word can be used. Each of theseis described in the
following sections.

« Round_Mode

e FLUSH TO_ZERO

« | EEE_Excepti ons

« Enabl eFPEXxcepti ons

7.3.1.1 Round_Mode

Four rounding modes are supported:

e ROUND _TO NEAREST_EVEN. The representable value nearest to the infinitely precise intermediate
valueistheresult. If thetwo nearest representable values are equally near (tie), then the one with the
least significant bit equal to zero (even) is the result.

e ROUND TOWARDS ZERO. Theresult isthe value closest to, and no greater in magnitude than, the
infinitely precise intermediate result.

e ROUND TOMRDS M NUS_I NF. Theresult isthe value closest to and no greater than the infinitely
precise intermediate result (possibly minus infinity).

e ROUND TOWARDS PLUS | NF. Theresultisthevalue closest to and no lessthan theinfinitely precise
intermediate result (possibly plus infinity).

By default, the rounding modeis set to ROUND_TO NEAREST _EVEN.
Following is an example of changing the round mode to ROUND_TOWARDS M NUS_| NF:

Example 7-1. Changing the round mode

#i ncl ude <fltmath. h>

Round_Mbde = ROUND TOMRDS M NUS | NF.

SC100 C Compiler 7-5

Runtime Libraries

7.3.1.2 FLUSH_TO_ZERO

Thisisaboolean configuration item that sets the behavior of un-normalized numbers. When set to true
(default) al un-normalized values are flushed to zero. Thisleads to better performance, but a smaller
dynamic range.

For example, to disable the FLUSH_TO_ZERO option, you would specify the following:

Example 7-2. Disabling flushing to zero

#i ncl ude <fltmath. h>

FLUSH TO ZERO = 0;

7.3.1.3 |EEE_Exceptions

Thisis astatusword that represents the | EEE exceptions that were raised during the last floating point
operation. By default, the floating point library sets these values but does not handle any of these
exceptions.

The following exceptions are supported:
e | EEE_I nexact
e | EEE Divide_By Zero
e | EEE Underfl ow
e | EEE Overflow
e | EEE Si gnaling_Nan
See the |EEE standard for the exact description of these exceptions.

Following is an example of how to use the exception status word:

Example 7-3. Using the exception status word

#i ncl ude <fltnmath. h>
float x,y;

ey
if (I EEE _Exceptions & | EEE Overfl ow)
<handl e overf| ow>

}

7-6 SC100 C Compiler

Floating Point Characteristics (float.h)

7.3.1.4 EnableFPExceptions

Thisisabit field mask. Setting aflag enables raising an SI GFPE signal if the last FP operation raised this
exception. For example:

Example 7-4. Setting a signal for exceptions

#i ncl ude <fltmath. h>
#i ncl ude <signal . h>
voi d S gFPHandl er (i nt x)

{

swi tch (I EEE Excepti ons)
{

case | EEE Overfl ow

;:a.se. | EEE D vi de_by zero:
}

}
float x,y;

iEnébI' eFPExceptions = | EEE Overflow | | EEE D vi de_by_zero;

signal (Sl GFPE, Si gFPHandl er)
X = x*y [*This will raise SIG-PE if overflow or divide by zero occur */

Thisexample instals asignal for handling overflow and divide by zero exceptions.

Note: Becausethesignal handling installs the handler addressinto the interrupt table, this example works
only if the interrupt vector table islocated in RAM. If the call to SI GNAL ishot ableto install the
new handler, SI G_ERR isreturned.

SC100 C Compiler 7-7

Runtime Libraries

7.4

Integer Characteristics (limits.h)

Thecontentsof 1 i mi ts. h arelisted in Table 7-6.
Table 7-6. Contents of File limits.h

Constant Value Purpose

CHAR BI' T 8 Width of char type, in bits

CHAR_NMAX 127 Maximum value for char

CHAR M N -128 Minimum value for char

I NT_MAX 2147483647 Maximum value for i nt

INT_MN (-2147483647-1) Minimum value for i nt

U NT MAX 4294967295u Maximum value for unsi gned i nt
LONG_MAX 2147483647 Maximum value for | ong i nt

LONG M N (-2147483647-1) Minimum value for | ong i nt

ULONG MAX 4294967295uL Maximum value for unsi gned | ong i nt
MB_LEN MAX 2 Maximum number of bytes in a multibyte character
SCHAR_MAX 127 Maximum value for si gned char
SCHAR M N -128 Minimum value for si gned char

UCHAR MAX 255 Maximum value for unsi gned char
SHRT_MAX 32767 Maximum value for short i nt

SHRT_M N -32768 Minimum value for short i nt

USHRT MAX 65535u Maximum value for unsi gned short int

7.5 Locales (locale.h)

Table 7-7 lists the locales functions that the compiler supports.

Table 7-7.

Locale Functions

Function

Purpose

| ocal econv(voi d)

setl ocal e(int category, const char*

| ocal e)

Note:

These functions are supported for compatibility purposes, and have no effect.

7-8

SC100 C Compiler

Floating Point Math (math.h)

7.6 Floating Point Math (math.h)

The mat h. h library contains the following function types:

Trigonometric functions

Hyperbolic functions

Exponential and logarithmic functions
Power functions

Other functions

The compiler runtime environment fully implements the mat h. h library using floating point emulation.

7.6.1 Trigonometric Functions
Table 7-8 lists the trigonometric functions that the compiler supports.

Table 7-8. Trigonometric Functions

Function Purpose
doubl e acos(doubl e) arc cosine
doubl e asi n(doubl e) arc sine
doubl e at an(doubl e) arc tangent
doubl e at an2(doubl e, doubl e) arc tangent2
doubl e cos(doubl e) cosine
doubl e sin(doubl e) sine

doubl e tan(doubl e) tangent

7.6.2 Hyperbolic Functions
Table 7-9 lists the hyperbolic functions that the compiler supports.

Table 7-9. Hyperbolic Functions

Function Purpose

doubl e cosh(doubl e) Hyperbolic cosine
doubl e si nh(doubl e) Hyperbolic sine
doubl e tanh(doubl e) Hyperbolic tangent

SC100 C Compiler 7-9

Runtime Libraries

7.6.3 Exponential and Logarithmic Functions

Table 7-10 lists the exponential and logarithmic functions that the compiler supports.

Table 7-10. Exponential and Logarithmic Functions

Function Purpose

doubl e exp(doubl e) Exponential

doubl e frexp(double, int*) Splits floating point into fraction and exponent
doubl e | dexp(doubl e, int) Computes value raised to a power

doubl e | og(doubl e) Natural logarithm

doubl e 1 0g10(doubl e) Base ten (10) logarithm

doubl e nodf (doubl e, doubl e*) Splits floating point into fraction and integer

7.6.4 Power Functions
Table 7-11 lists the power functions that the compiler supports.

Table 7-11. Power Functions

Function Purpose
doubl e pow(doubl e, doubl e) Raises value to a power
doubl e sqgrt(doubl e) Square root

7.6.5 Other Functions

Table 7-12 lists the other functions that the compiler supports.
Table 7-12. Other Functions

Function Purpose

doubl e ceil (doubl e) Ceiling

doubl e fabs(doubl e) Floating point absolute number
doubl e f1 oor (doubl e) Floor

doubl e fnod(doubl e, doubl e) Floating point remainder

7-10

SC100 C Compiler

Nonlocal Jumps (setjmp.h)

7.7 Nonlocal Jumps (setjmp.h)

Table 7-13 lists the nonlocal jumps that the compiler supports.
Table 7-13. Nonlocal Jumps

Function Purpose

typedef unsigned int jnp_buf[32] Buffer _used to save the
execution context

void | ongj nmp(j np_buf, int) Nonlocal jump

int setjnp(jnp_buf) Nonlocal return

7.8 Signal Handling (signal.h)

Table 7-14 lists the signal handling that the compiler supports.
Table 7-14. Signal Handling (signal.h)

Function Purpose
int raise(int) Raises a signal
voi d(*signal (int, void (*)(int))) (int) Installs a signal handler

7.9 Variable Arguments (stdarg.h)

Table 7-15 lists the variable arguments that the compiler supports.
Table 7-15. Variable Arguments (stdarg.h)

Function Purpose

va_arg(_ap, _type) (*(_type*)((_ap) -= sizeof (_type))) Returns next parameter in
argument list

va_end(_ap) (void)0 Performs cleanup of argument
list

va_list Type declaration of variable
argument list

va_start(_ap, _parnN) (void)(_ap = (char*)& parnm) Performs initialization of

argument list

SC100 C Compiler 7-11

Runtime Libraries

7.10 Standard Definitions (stddef.h)

Table 7-16 lists the standard definitions that the compiler supports.
Table 7-16. Standard Definitions (stddef.h)

Function

Purpose

NULL((voi d*) 0)
of f set of (type, nenber)
typedef int ptrdiff_t

typedef unsigned int size_t

t ypedef unsigned short wchar t

Null pointer constant
Field offset in bytes from start of structure

Signed integer type resulting from the
subtraction of two pointers

Unsigned integer type that is the data type of
the si zeof operator

Wide character type, as defined in ISO C

7.11 1/O Library (stdio.h)

Thest di 0. h library contains the following function types:

e Input functions

e Stream functions

e Output functions

* Miscellaneous I/O functions

7.11.1 Input Functions
Table 7-17 lists the input functions that the compiler supports.

Table 7-17. Input Functions

Function

Purpose

char* fgets(char*, int, FILE")
int fgetc(FILE*")
size t fread(void*, size t, size_ t, FILE*)

int fscanf(FILE*, const char*, ...)

int getc(FILE")

i nt getchar(void)

Reads characters to the specified
stream

Inputs a single character if available
from specified stream

Inputs a size number of characters from
stdin

Inputs text from the specified stream

Inputs a single character if available
from specified stream

Inputs a single character if available
from st din

int scanf(const char*, ...) Inputs text from st di n
i nt sscanf(const char*, const char*, ...) Inputs text from specified string
7-12 SC100 C Compiler

1/0O Library (stdio.h)

7.11.2 Stream Functions

Table 7-18 lists the stream functions that the compiler supports.

Table 7-18. Stream Functions

Function

Purpose

void clearerr(FILE*)
int fclose(FlLE")

i nt feof (FILE*)
int ferror(FlLE")
int fgetpos(FILE*, fpos_t*)

FI LE* freopen(const char*, const char*, FI LE¥)
int fseek(FILE*, long int, int)

int fsetpos(FILE*, const fpos_t*)

long int ftell (FILE*)

int renove(const char*)

i nt rename(const char*, const char¥*)

voi d rew nd(Fl LE*)

voi d set buf (FI LE*, char*)

i nt setvbuf (FILE*, char*, int, size_t)

stderr
stdin
st dout
FILE* tnpfil e(void)
char* tnpnan(char*)

Clears the EOF and error indicators for the
specified stream

Flushes the specified stream and closes the file
associated with it

Tests the EOF indicator for the specified stream
Tests the error indicator for the specified stream

Stores the current value of the file position
indicator for the specified stream

Opens the specified file in the specified mode,
using the specified stream

Sets the file position indicator for the specified
stream

Sets the file position indicator for the specified
stream to the specified value

Retrieves the current value of the file position
indicator for the current stream

Makes the specified file unavailable by its defined
name

Assigns to the specified file a new filename

Sets the file position indicator for the specified
stream to the beginning of the file

Defines a buffer and associates it with the
specified stream. A restricted version of
set vbuf ()

Defines a buffer and associates it with the
specified stream

Standard error stream (Value = 3)
Standard input stream (Value = 1)
Standard output stream (Value = 2)
Creates a temporary file

Generates a valid filename, meaning a filename
that is not in use, as a string

SC100 C Compiler

7-13

Runtime Libraries

7.11.3 Output Functions

Table 7-19 lists the output functions that the compiler supports.

Table 7-19. Output Functions

Function

Purpose

int fprintf(FILE*, const char*,

int fputc(int, FILE*)

int fputs(const char*, FILE*)

)

si ze_t,
)
va_list)
va_list)

size_t fwite(const void*, size_t,
char* gets(char*)

voi d perror(const char*)

int printf(const char*, ...)

int putc(int, FILE¥)

int putchar(int)

int puts (const char*)

int sprintf(char*, const char*,
int vfprintf(FILE*, const char*,
int vprintf(const char*, va_list)
int vsprintf(char*, const char*,

Outputs the specified text to the
specified stream

Outputs a single character to the
specified stream

Outputs a string to the specified stream

Outputs a size number of characters to
st dout

Reads characters into the user’s buffer
Outputs an error message
Outputs the specified text to st dout

Outputs a single character to the
specified stream

Outputs a single character

Outputs the string to st dout , followed
by a newline

Outputs the specified text to the
specified buffer

Outputs the variable arguments to the
specified stream

Outputs the variable arguments to
st dout

Outputs the variable arguments to the
specified buffer

7.11.4 Miscellaneous I/O Functions

Table 7-20 lists the miscellaneous I/O functions that the compiler supports.

Table 7-20. Miscellaneous I/O Functions

Function

Purpose

int fflush(FILE")

FI LE* fopen(const char*,

int ungetc(int, FILE*)

const char*)

Causes the output buffers to be emptied to
their destinations

Associates a stream with a file

Moves the character back to the head of the
input stream

7-14

SC100 C Compiler

General Utilities (stdlib.h)

7.12 General Utilities (stdlib.h)

Thestdlib. h library contains the following function types.
e Memory allocation functions
* Integer arithmetic functions
e String conversion functions
e Searching and sorting functions
e Pseudo random number generation functions
* Environment functions
e Multibyte functions

7.12.1 Memory Allocation Functions

Table 7-21 lists the memory allocation functions that the compiler supports.

Table 7-21. Memory Allocation Functions

Function Purpose

voi d free(voi d*) Returns allocated space to heap

voi d* cal | oc(size_t, size_t) Allocates heap space initialized to zero
voi d* mal | oc(size_t) Allocates heap space

voi d* real |l oc(voi d*, size_t) Allocates a larger heap space and returns

previous space to heap

7.12.2 Integer Arithmetic Functions
Table 7-22 lists the integer arithmetic functions that the compiler supports.

Table 7-22. Integer Arithmetic Functions

Function Purpose

int abs(int) Absolute value

div_t div(int, int) Quotient and remainder

I ong I abs(long int) Computes absolute value and returns as
| ong

Idiv_t Idiv(long int, long int) Quotient and remainder of | ong i nt

SC100 C Compiler 7-15

Runtime Libraries

7.12.3 String Conversion Functions

Table 7-23 lists the string conversion functions that the compiler supports.

Table 7-23. String Conversion Functions

Function Purpose
doubl e at of (const char*) String to float
int atoi (const char*) String to int
long int atol (const char*) Long

doubl e strtod(const char*, char**) Double
long int strtol (const char*, char**, int) Long

unsi gned long int strtoul (const char*, char**, int) Unsigned long

7.12.4 Searching and Sorting Functions

Table 7-24 lists the searching and sorting functions that the compiler supports.

Table 7-24. Searching and Sorting Functions

Function Purpose

voi d *bsearch(const voi d*, const void*, size t, size_t, Binary search
int(*)(const void*, const void*))

voi d *gsort(void*, size_t, size_t, int(*)(const void*, Quick sort
const voi d*))

7.12.5 Pseudo Random Number Generation Functions

Table 7-25 lists the pseudo random number generation functions that the compiler supports.

Table 7-25. Pseudo Random Number Generation Functions

Function Purpose
int rand(void) Random number generator
voi d srand(unsigned int) Initializes the random number generator

7-16 SC100 C Compiler

String Functions (string.h)

7.12.6 Environment Functions

Table 7-26 lists the environment functions that the compiler supports.

Table 7-26. Environment Functions

Function

Purpose

voi d abort (void)

int atexit(void (*)(void))

void exit(int)

char *getenv(const char *name)?
int system(const char *string)?

Causes an abnormal termination

Registers a function to be called at
normal termination

Causes a normal termination
Gets environment variable

Passes command to host environment

1. This function is supported for conpatibility purposes and has no effect.

7.12.7 Multibyte Character Functions

Table 7-27 lists the multibyte character functions that the compiler supports.

Table 7-27. Multibyte Character Functions

Function

Purpose

i nt mbl en(const char*, size_t)

size_t nbstowcs(wchar _t*,

i nt mbtowc(wchar _t*, const char?*,

int wetonb(char*, wchar _t)

size t westonbs (char*, const wchar _t*,

const char*,

Multibyte string length

Converts multibyte string to wide
character string

Converts multibyte to wide character
Converts wide character to multibyte

Converts wide character string to
multibyte string

7.13 String Functions (string.h)

Thestring. h library contains the following function types:

e Copying functions

» Concatenation functions
e Comparison functions

» Search functions

e Other functions

SC100 C Compiler

7-17

Runtime Libraries

7.13.1 Copying Functions

Table 7-28 lists the copying functions that the compiler supports.

Table 7-28. Copying Functions

Function Purpose
voi d* nencpy(voi d*, const void*, size_ t) Copies data
voi d* nemmove(voi d*, const void*, size t) Swaps data

char* strcpy(char*, const char*)

char* strncpy(char*, const char*, size_t)

Copies a string

Copies a string of a maximum length

7.13.2 Concatenation Functions

Table 7-29 lists the concatenation functions that the compiler supports.

Table 7-29. Concatenation Functions

Function

Purpose

char* strcat(char*, const char*)

char* strncat (char*, const char*, size_t)

Concatenates a string to the end of another
string

Concatenates a string of specified maximum
length to the end of another string

7.13.3 Comparison Functions

Table 7-30 lists the comparison functions that the compiler supports.

Table 7-30. Comparison Functions

Function

Purpose

i nt mencnp(const voi d*, const void*, size t)
int strcnp(const char*, const char?*)
int strcoll (const char*, const char*)
int strncnp(const char*, const char*, size t)

size t strxfrm(char*, const char*, size_ t)

Compares data

Compares strings

Compares strings based on locale
Compares strings of maximum length

Transforms a string into a second string of
the specified size

7-18

SC100 C Compiler

String Functions (string.h)

7.13.4 Search Functions
Table 7-31 lists the search functions that the compiler supports.

Table 7-31. Search Functions

Function

Purpose

voi d* nenthr(const void*, int,

char* strchr(const char*, int)

size_t strcspn(const char*, const char*)

char strpbrk(const char*, const char*)

char* strrchr(const char*, int)

size_t strspn(const char*, const char*)
char* strstr(const char*, const char*)

char* strtok(char*, const char*)

Searches for a value in the first number of
characters

Searches a string for the first occurrence of
char

Searches a string for the first occurrence of
char in string set and returns the number of
characters skipped

Searches a string for the first occurrences of
char in string set and returns a pointer to
that location

Searches a string for the last occurrence of
char

Searches a string for the first occurrence of
char not in string set.

Searches a string for the first occurrence of
string

Separates a string into tokens

7.13.5 Other Functions

Table 7-32 lists the other functions that the compiler supports.

Table 7-32. Other Functions

Function

Purpose

voi d* nenset (void*, int, size_ t)

char* strerror(int)

size_ t strlen(const char?*)

Copies a value into each number of
characters

Returns string for associated error condition

Returns size of string

SC100 C Compiler

7-19

Runtime Libraries

7.14 Time Functions (time.h)

Table 7-33 lists the time functions that the compiler supports.

Table 7-33. Time Functions

Function Purpose

char *asctinme(const struct tm*timeptr) Converts time to ASCII representation
clock_t clock() Returns processor time

typedef unsigned | ong cl ock_t Type used for measuring time

char *ctine (const time_t *tinmer) Converts time to ASCII representation

double difftime(time_t tinel, time_t time0) Returns difference in seconds

time_t nktime(struct tm*timeptr) Convertsstruct tmto time_t
size t strftinme (char *s, size_t naxsize, Converts an ASCII string to t i me_t
const char *format, const struct tm*tinmeptr)

time_t tine(time_t *tinmer) Returns processor time (same as cl ock)
typedef unsigned long tine_t Type used for measuring time

struct tm*gntine(const tine_t *tiner) Returns time in GMT time zone

struct tm*localtine(const time_t *tinmer) Returns time in local time zone

7.14.1 Time Constant

Table 7-34 shows the time constant that the compiler supports.
Table 7-34. Time Constant

Constant Value Purpose

CLOCKS_PER _SEC TBD

7.14.2 Process Time

Thecl ock function returns the current value of the system timer. This function must be configured to
match the actual system timer configuration. The timer is started and set for a maximum period during the
initialization of any C program that referencesthe cl ock function, and is used only by this function. The
return value of cl ock hastypecl ock_t , whichisunsi gned | ong.

The following example shows how to use the cl ock function to time your application:;

Example 7-5. Timing an application

#i ncl ude <tinme. h>
clock t start, end, el apsed,;

/* . . . application setup . . . */
start = clock();
/[* . . . application processing . . . */

end = clock();
el apsed = end - start; /* Assumes no w ap-around */
printf("H apsed time: %u * 2 cycles. \n", elapsed);

7-20 SC100 C Compiler

Built-in Intrinsic Functions (prototype.h)

7.15 Built-in Intrinsic Functions (prototype.h)

The compiler supports a set of built-in intrinsic functions that enable fractional operationsto be
implemented using integer data types, by mapping directly to SC100 assembly instructions.

Table 7-35 lists these built-in intrinsic functions.

Table 7-35. Built-in Intrinsic Functions

Function

Purpose

short abs_s(short varl)

short add(short var1l, short var?2)

Bi t Rever seUpdat e

Wrd64 D _add(Word64 D varl,
Wor d64

short D_cnpeq(Wrd64 D varl,
Wor d64

short D _cnpgt (Word64 D varl,
Wor d64

| ong D_extract_h(Wrd64 D varl)

unsi gned | ong D _extract_|
(Vor dé4

Wrd64 D _mac(Word64 D var 3,
long L_varl,|ong

Wrd64 D _nsu(Word64 D var 3,
long L_varl,|ong

D var 2)

D var2)

D var 2)

D var1l)

L_var2)

L_var2)

Wrd64 D nmult(long L_varl,long L_var?2)

| ong D_round(Word64 D varl)

Wrd64 D _sat (Wrd64 D varl)

Short absolute value of var 1. For example, the result of
abs_s(-32768)is +32767.

Short add. Performs the addition var 1+var 2 with overflow
control and saturation. The 16-bit result is set at +32767
when overflow occurs, or at - 32768 when underflow
occurs.

Increments the iterator with bit reverse.

Double precision add. Performs the addition
D var 1+D var 2 with overflow control and saturation.

Double precision compare equal. Compares two 64-hit
values and returns a 16-bit result containing the value ???
if the values are equal, or ??? if they are not.

Double precision compare greater than. Compares two
64-bit values and returns a 16-bit result containing ???.

Double precision extract high. Returns the 32 MSB of the
64-bit value D_var 1.

Double precision extract low. Returns the 32 LSB of the
64-bit value D_var 1 as an unsigned 32-bit value.

Double precision multiply accumulate. Multiplies L_var 1
by L_var 2 and shifts the result left by 1. Adds the 64-bit
resultto L_var 3 with saturation, and returns a 64-bit result.
For example:

D mac(D var3,L_varl,L _var2) =

D add(D var3,D mult(L_varl,L_var2)).

Double precision multiply subtract. Multiplies L_var 1 by
L_var 2 and shifts the result left by 1. Subtracts the 64-bit
result from D_var 3 with saturation, and returns a 64-bit
result. For example:

D nsu(D var3,L_varl, L var2) =

D sub(D var3,D mult(L_varl,L_var2)).

Double precision multiply. The 64-bit result of the
multiplication of L_var 1 by L_var 2 with one shift left, for
example: D_mult (L_var1,L_var2) =

D shl ((L_var1*L_var2),1).

Double precision round. Rounds the lower 32 bits of the
64-bit D_var 1 into the MS 32 bits with saturation. Shifts the
resulting bits right by 32 and returns the 32-bit value.

Double precision saturation. Saturates a 64-bit value.

SC100 C Compiler

7-21

Runtime Libraries

Table 7-35. Built-in Intrinsic Functions (Continued)

Function

Purpose

Wrd64 D set(long L_varl,
unsi gned | ong L_var?2)

Word64 D_sub(Word64 D varl,
Wr d64 D_var 2)

voi d debug()
voi d debugev()
voi d di()

short div_s(short varl, short var?2)

void ei()

EndBi t Rever se

short extract_h(long L_var1l)
short extract_|(long L_varl)

void illegal ()

I nitBitReverse

Il ong L_abs(long L_varl)

long L_add(long L_varl,long L_var?2)

| ong L_deposit_h(short varl)

| ong L_deposit_I(short varl)

long L_mac(long L_var3,short varl,
short var2)

long L_nmax(long L_varl,long L_var?2)

long L_mn(long L_varl,long L_var?2)

Double precision concatenation. Concatenates two 32-bit
values, L_var 1 and unsigned L_var 2, into one 64-bit
value.

Double precision subtract. 64-bit subtraction of the two
64-bit variables (D_var 1- D_var 2) with overflow control
and saturation.

Generates assembly instruction to enter Debug mode.
Generates assembly instruction to issue Debug event.
Generates assembly instruction to disable interrupts.

Short divide. Produces a result which is the fractional
integer division of var 1 by var 2; var 1 and var 2 must be
positive, and var 2 must be greater or equal to var 1. The
result is positive (leading bit equal to 0) and truncated to 16
bits. Ifvar 1 = var 2 thendi v(var 1, var2) = 32767.

Generates assembly instruction to enable interrupts.
Frees bit reverse iterator.

Long extract high. Returns the 16 MSB of L_var 1.
Long extract low. Returns the 16 LSB of L_var 1.

Generates assembly instruction to execute i | | egal
exception.

Allocates a bit reverse iterator.

Long absolute value of L_var 1. Saturates in cases where
the value is - 214783648.

Long add. 32-bit addition of the two 32-bit variables
(L_var 1+L_var 2) with overflow control and saturation.
The resultis set at +2147483647 when overflow occurs, or
at - 2147483648 when underflow occurs.

Deposit short in MSB. Deposits the 16-bit var 1 into the 16
MS bits of the 32-bit output. The 16 LS bits of the output
are zeroed.

Deposit short in LSB. Deposits the 16-bit var 1 into the 16
LS bits of the 32-bit output. The 16 MS bits of the output
are sign extended.

Multiply accumulate. Multiplies var 1 by var 2 and shifts
the result left by 1. Adds the 32-bit result to L_var 3 with
saturation, and returns a 32-bit result. For example:
L_mac(L_var3,varl,var2) =
L_add(L_var3,L_mult(varl,var2)).

Compares the values of two 32-bit variables and returns
the higher value of the two.

Compares the values of two 32-bit variables and returns
the lower value of the two.

7-22

SC100 C Compiler

Built-in Intrinsic Functions (prototype.h)

Table 7-35. Built-in Intrinsic Functions (Continued)

Function

Purpose

long L_nsu(long L_var3,short varl,
short var?2)

long L_mult(short varl,short var?2)

Il ong L_negate(long L_varl)

long L_rol (long L_var1l)
long L_ror(long L_varl)

long L_sat(long L_varl)
long L_shl (long L_varl, short var?2)

long L_shr(long L_varl,short var2)

long L_shr_r(long L_varl, short var?2)

long L_sub(long L_varl,long L_var?2)

short nmac_r(long L_var3,short varl,
short var2)

voi d mark()
short max(short varl, short var?2)
short mn(short varl, short var?2)

| ong npyuu(long L_varl,long L _var?2)

Multiply subtract. Multiplies var 1 by var 2 and shifts the
result left by 1. Subtracts the 32-bit result from L_var 3 with
saturation, and returns a 32-bit result. For example:
L_nmsu(L_var3,varl,var2) =
L_sub(L_var3,L_mult(varl,var2)).

Long multiply. The 32-bit result of the multiplication of var 1
by var 2 with one shift left, for example:
L_mult(varl,var2)= L_shl ((varl*var2), 1)

and L_mult(-32768,-32768) = 2147483647.

Long negate. Negates the 32-bit variable L_var 1 with
saturation. Saturates in cases where the value is
-2147483648(0x8000 0000) .

Long rotate left. Rotates the 32-bit variable L_var 1 left into
a 40-bit value, and returns a 32-bit result..

Long rotate right. Rotates the 32-bit variable L_var 1 right
into a 40-bit value, and returns a 32-bit result.

Saturates a 32-bit value.

Long shift left. Arithmetically shifts the 32-bit L_var 1 left
var 2 positions. Zero fills the var 2 LSB of the result. If
var 2 is negative, arithmetically shifts L_var 1 right by
var 2 with sign extension. Saturates the result in cases
where underflow or overflow occurs.

Long shift right. Arithmetically shifts the 32-bit L_var 1 right
var 2 positions with sign extension. If var 2 is negative,
arithmetically shifts L_var 1 left by var 2 and zero fills the
var 2 LSB of the result. Saturates the result in cases where
underflow or overflow occurs.

Long shift right and round. Same as
L_shr(L_var 1, var 2) but with rounding. Saturates the
result in cases where underflow or overflow occurs.

Long subtract. 32-bit subtraction of the two 32-bit variables
(L_var 1-L_var 2) with overflow control and saturation.
The result is set at +2147483647 when overflow occurs or
at - 2147483648 when underflow occurs.

Multiply accumulate and round. Multiplies var 1 by var 2
and shifts the result left by 1. Adds the 32-bit result to
L_var 3 with saturation. Rounds the LS 16 bits of the result
into the MS 16 bits with saturation and shifts the result right
by 16. Returns a 16-bit resullt.

Generates assembly instruction to write program counter to
trace buffer, if trace buffer enabled.

Compares the values of two 16-bit variables and returns
the higher value of the two.

Compares the values of two 16-bit variables and returns
the lower value of the two.

Multiplies the 16 LSB of two 32-bit variables, treating both
variables as unsigned values, and returns a 32-hit result.

SC100 C Compiler

7-23

Runtime Libraries

Table 7-35. Built-in Intrinsic Functions (Continued)

Function

Purpose

| ong npyus(long L_varl,long L _var?2)

I ong npysu(long L_varl,long L_var?2)

short nsu_r(long L_var3,short varl,
short var?2)

short mult(short varl, short var?2)

short mult_r(short varl, short var?2)

short negate(short varl)

short norml (long L_varl)

short norms(short varl)

short round(long varl)

short saturate(short varl)

setcnvrm()

Multiplies the 16 LSB of the 32-bit variable L_var 1,
treated as an unsigned value, by the 16 MSB of the 32-hit
variable L_var 2, treated as a signed value. Returns a
32-bit result.

Multiplies the 16 MSB of the 32-bit variable L_var 1,
treated as a signed value, by the 16 LSB of the 32-bit
variable L_var 2, treated as an unsigned value. Returns a
32-bit result.

Multiply subtract and round. Multiplies var 1 by var 2 and
shifts the result left by 1. Subtracts the 32-bit result from
L_var 3 with saturation. Rounds the LS 16 bits of the result
into the MS 16 bits with saturation and shifts the result right
by 16. Returns a 16-bit result.

Short multiply. Performs the multiplication of var 1 by var 2
and gives a 16-bit result which is scaled, for example:

mul t (var1,var2) =

extract | (L_shr((varl * var2),15)) and

mul t (- 32768, -32768) = 32767.

Multiply and round. Same as rrul t with rounding, for
example: mult _r(varl,var2) = extract_|
(L_shr(((var1*var?2)+16384), 15))

andrmul t _r(-32768, -32768) = 32767.

Short negate. Negates var 1 with saturation. Saturates in
cases where the value is - 32768, for example:
negate(varl) = sub(0,varl).

Normalizes any long fractional value. Produces the number
of left shifts needed to normalize the 32-bit variable

L_var 1 for positive values on the interval with minimum of
1073741824 and maximum of 2147483647, and for
negative values on the interval with minimum of

- 2147483648 and maximum of - 1073741824. In order to
normalize the result, the following operation must be
executed:

normlL_varl = L_shl(L_varl,norml (L_varl)).

Normalizes any fractional value. Produces the number of
left shifts needed to normalize the 16-bit variable var 1 for
positive values on the interval with minimum of 16384 and
maximum of 32767, and for negative values on the interval
with minimum of - 32768 and maximum of - 16384. In
order to normalize the result, the following operation must
be executed:

normvarl = shl (varl, norms(varl)).

Round. Rounds the lower 16 bits of the 32-bit number into
the MS 16 bits with saturation. Shifts the resulting bits right
by 16 and returns the 16-bit number, for example:
round(L_varl) =

extract _h(L_add(L_varl, 32768)).

Saturates a 16-bit value.

Sets rounding mode to convergent rounding mode.

7-24

SC100 C Compiler

Built-in Intrinsic Functions (prototype.h)

Table 7-35. Built-in Intrinsic Functions (Continued)

Function

Purpose

set2crm()
voi d setnosat ()
voi d setsat 32()

short shl (short varl, short var?2)

short shr(short varl, short var?2)

short shr_r(short varl, short var?2)

voi d stop()

short sub(short varl, short var?2)

void trap()

void wait ()

Wor d40 X_abs(Word40 X varl)

Wor d40 X_add(Werd40 X varl,
Wor d40 X _var 2)

short X cnpeq(Word40 X varl,
Wor d40 X_var 2)

short X cnpgt (Word40 X varl,
Wor d40 X _var 2)

Word40 X extend(long L_varl)
short X extract_h(Wrd40 X varl)

short X extract_| (Wrd40 X varl)

Wor d40 X_mac(Wor d40 X var 3,
short varl, short var2)

Sets rounding mode to two’s-complement rounding mode.
Clears saturation mode bit in status register.
Sets saturation mode bit in status register.

Short shift left. Arithmetically shifts the 16-bit var 1 left
var 2 positions. Zero fills the var 2 LSB of the result. If
var 2 is negative, arithmetically shifts var 1 right by var 2
with sign extension. Saturates the result in cases where
underflow or overflow occurs.

Short shift right. Arithmetically shifts the 16-bit var 1 right
var 2 positions with sign extension. If var 2 is negative,
arithmetically shifts var 1 left by var 2 with sign extension.
Saturates the result in cases where underflow or overflow
occurs.

Short shift right and round. Same as shr (var 1, var 2) but
with rounding. Saturates the result in cases where
underflow or overflow occurs.

Generates assembly instruction to enter St op low power
mode.

Performs the subtraction with overflow control and
saturation.The 16-bit result is set at +32767 when overflow
occurs or at - 32768 when underflow occurs.

Generates assembly instruction to execute Tr ap
exception.

Generates assembly instruction to enter Wai t low power
mode.

40-bit absolute value of X_var 1.

Extended precision add. Performs the addition
X _var 1+X_var 2 without saturation. .

Extended precision compare equal. Compares two 40-bit
values and returns a 16-bit result containing the value ???
if the values are equal, or ??? if they are not.

Extended precision compare greater than. Compares two
40-bit values and returns a 16-bit result containing ???.

Sign extend 32-bit value to 40-bit value.

Extended precision extract high. Returns the 16 MSB of the
40-bit value X _var 1.

Extended precision extract low. Returns the 16 LSB of the
40-bit value X_var 1.

Extended precision multiply accumulate. Multiplies var 1 by
var 2 and shifts the result left by 1. Adds the 40-bit result to
X _var 3 without saturation, and returns a 40-bit result. For
example: X_mac(X _var 3, var1l,var2) =

X add(X var3, X_mult(varl,var2)).

SC100 C Compiler

7-25

Runtime Libraries

Table 7-35. Built-in Intrinsic Functions (Continued)

Function

Purpose

Wor d40 X_nmsu(Wor d40 X var 3,
short varl, short var2)

Word40 X _mult (short var_1, short var_2)

short X _norm(Word40 X varl)

Word40 X_or (Word40 X var 1,
Wor d40 X_var 2)

Wor d40 X_rol (Wor d40)
Wor d40 X_ror (Wor d40)
short X round(Word40 X varl)

| ong X_sat (Word40 X var1l)

Word40 X_set (char varl,
unsi gned | ong L_var?2)

Wor d40 X _shl (Word40 X varl, short var?2)

Word40 X _shr(Word40 X varl, short var?2)

Wor d40 X_sub(Word40 X var1l,
Wor d40 X_varl)

I ong X trunc(Wrd40 X varl)

Extended precision multiply subtract. Multiplies var 1 by
var 2 and shifts the result left by 1. Subtracts the 40-bit
result from var 3 without saturation, and returns a 40-bit
result. For example: X_nsu(X _var 3, varl,var2) =
X_sub(X var3, X_mult(varl,var2)).

Extended precision multiply. The 40-bit result of the
multiplication of var 1 by var 2 with one shift left, for
example: X nmult(varl,var2) =

X_shl ((varl*var2),1).

Normalizes a 40-bit fractional value.

Performs logical OR on two 40-bit values.

Rotates left a 40-bit value.
Rotates right a 40-bit value.

Extended precision round. Rounds the lower 16 bits of the
40-bit number into the MS 16 bits without saturation. Shifts
the resulting bits right by 16 and returns the 16-bit number.

Extended precision saturation. Saturates a 40-bit value.

Extended precision concatenation. Concatenates an 8-bit
character value and an unsigned 32-bit value into one
40-bit value.

Extended shift left. Arithmetically shifts the 40-bit X_var 1
left var 2 positions. Zero fills the var 2 LSB of the result. If
var 2 is negative, arithmetically shifts X_var 1 right by
var 2 with sign extension.

Extended shift right. Arithmetically shifts the 40-bit X_var 1
right var 2 positions with sign extension. If var 2 is
negative, arithmetically shifts X_var 1 left by var 2 and
zero fills the var 2 LSB of the result.

Extended precision subtract. 40-bit subtraction of the two
40-bit variables (X_var 1- X_var 2) without saturation.

Truncates 40-bit value into 32-bit value.

7-26

SC100 C Compiler

Appendix A
Migrating from Other Environments

The SC100 C Compiler provides header files that make it easy to migrate C code developed for certain
other compilers. The compilation and its results may be affected in various ways by the differences
between specific compiler environments and the compiler. The effects may include, for example,
assembler errors for inlined code that is not supported, or loss of efficiency for functions that are
supported, but implemented in a different way.

This Appendix contains the following sections:

e Section A.1, “Code Migration Overview,” provides general guidelines for migrating code from
another environment to the compiler.

e Section A.2, “Migrating Code Developed for DSP56600,” describes the issues to be considered
when migrating code developed for the DSP56600 compiler family.

e Section A.3, “Migrating Code Developed for TI6xx,” describes the differences to take into account
when migrating code developed for the TI6xx family of compilers.

A.1 Code Migration Overview

In most circumstances, the compiler can successfully compile standard ANSI code that:

» Does not use compiler-specific extensions

e Doesnot rely implicitly on the sizes of datatypes

e Does not rely on system-specific features, such as memory maps or peripherals
e Does not rely on undefined compiler behavior

The compiler runtime libraries include a header file for each environment for which code is accepted, as
follows:

» DSP56600 compilers: port 566t 0SCL. h header file
e TI6xx compilers: port c6xt 0SC1. h header file

SC100 C Compiler A-1

Migrating from Other Environments

The features used in the specified environment are defined in the relevant header file with correct values,
to ensure that the code is not affected and compiles successfully.

To use these definitions, just include the appropriate header file to your source code. For example, when
migrating code from the DSP56600 compiler environment, include the por t 566t 0SCL. h header file, as
shown in Example A-1.

Example A-1. Migrating code from other environments

#i ncl ude <port 566t 0SCl1. h>
voi d nai n()

{

}

A.2 Migrating Code Developed for DSP56600

When using the SC100 C Compiler with code developed for the DSP56600 family of compilers, the
following differences should be taken into account:

* Integer datatypes. The DSP56600 and SC100 compilers map certain integer datatypesto different
sizes. Table A-1 lists the data type size discrepancies that relate to integers:

Table A-1. DSP56600 Integer Data Type Differences

Data Type DSP56600 Compiler SC100 C Compiler
char Saved in memory as 16 hits. Some 8 bits
unsigned char operations are performed with 16 bits,
others with 8.
packed char 8 bits Not supported
int 16 bits 32 hits
unsigned int
enum 16 bits 32 bits

e Fractional datatypes. DSP56600 compilers use built-in data types for declaring fractional
variables. The SC100 C Compiler uses standard integer types for both fractional and integer values.
Table A-2 lists the fractional data type differences.

Table A-2. DSP56600 Fractional Data Type Differences

Data Type DSP56600 Compiler SC100 C Compiler
16-hit fraction _fract Word16

32-bit fraction long_fract Word32

40-bit accumulator long_fract Word40

64-bit fraction Not supported Word64

Complex fractions _complex Not supported directly

» Floating point data types. DSP56600 compilers represent floating point data types according to a
32-bit proprietary format. The SC100 C Compiler maps fractional datatypesto asingle-precision
|EEE-754 type, using 32 bits. As aresult, there may be differencesin the numerical accuracy of
floating point calculations.

A-2 SC100 C Compiler

Migrating Code Developed for DSP56600

» Pointers: The differencein pointer size between the two compilersis shown in Table A-3:

Table A-3. DSP56600 Pointer Size Differences

Data Type DSP56600 Compiler SC100 C Compiler

pointer to char 16 bits 32 hits

pointer to shor t 16 bits 32 bits, even addresses only
pointer to | ong 16 bits 32 bits, quad addresses only

In most circumstances, the difference in pointer size is unlikely to have any impact, since the
relevant addresses are usually mapped to different numerical values on different processors.

Fractional arithmetic: DSP56600 compilers support fractional arithmetic using integer-like
operators, such as+ and*. The SC100 C Compiler implements fractional operationsthrough the use
of intrinsic functions. Table A-4 lists the DSP56600 fractional operations and shows the equivalent
SC100 C Compiler intrinsic functions:

Table A-4. DSP56600 Fractional Arithmetic Differences

Fractional Operation

DSP56600 Compiler

SC100C Compiler

Addition

Subtraction

Absolute value

Multiplication

Shift right
Shift left
Negate
Round
Divide
Normalize

Saturation control

+

_fabs
_Ifabs

>>

<<

_fract_round
_pdiv
Can be implemented using _asm

Can be implemented using _asm

Word16 add
Word32 L_add

Word16 sub
Word32 L_sub

Word16 abs_s
Word32 L_abs

Word16 mult
Word32 L_mult
Word16 mult_r

Word16 shr
Word32 L_shr

Word16 shl
Word32 L_shl

Word16 negate
Word32 L_negate

Word16 round
Word16 div_s

Word16 norm_s
Word16 norm_|

void setnosat
void setsat32

The SC100 C Compiler supports many more fractional operations, including 40-bit and 64-bit
fractional functions, which are not supported in the DSP56600 environment.

e Inlined assembly and C code: DSP56600 compilersuse_i nl i ne and _asm to designate a
C routine for inlining, and to define the instructions, operands and modifiers for inlined assembly
statements. The SC100 C Compiler usesthe pragma#pr agma i nl i ne to specify an inlined
function. See Chapter 4, “Interfacing C and Assembly Code,” for more information.

SC100 C Compiler

A-3

Migrating from Other Environments

Intrinsic functions: The SC100 C Comepiler library routines support a number of DSP56600
intrinsic functions, as shown in Table A-5:

Table A-5. DSP56600 Intrinsic Function Differences

Description DSP56600 Compiler SC100 C Compiler
Bit field operations _bfchg() Can be implemented by library routines
_bfclr()
_bfset()
_bftsth()
_bftstl()
Cache control _cache_get_start() Not available
_cache_get_end()
_pflush()
_pflushun()
_pfree()
_plock()
_punlock()
Fraction to integer coercion _fract2int() Not needed (both represented by integers)
_lfract2long
Integer to fraction coercion _intt2fract() Not needed (both represented by integers)
_long2Ifract()
Extend byte in accumulator _ext() Not applicable
Fractional square root _fsqrt() Can be implemented by a library routine
String copy (inlined) _stremp() Supported as a library routine (st r cnp)
Absolute of long integer _labs labs()
Insert NOP instruction _hop() _asm(“nop”)
STOP instruction _stop() stop()
Software interrupt _swi() trap()
WAIT instruction _wait() wait()
Viterbi operation _vsl Can be implemented by a library routine

Pragmas: The functions of the DSP56600 inlined assembly pragmas asm asm nof | ush and
endas mare supported by the SC100 C Compiler using afunction qualifier. The SC100 C Compiler
loop optimization pragma#pragmal oop_count isthe equivalent of the DSP56600 pragmas
iterate_at | east_onceandno_ iterate_ at |east _once.

The following DSP56600 pragmas have no equivalent in the SC100 C Compiler environment:
— cache_al i gn_now

— cache_sector_si ze

— cache_region_start

— cache_regi on_endpack_strings

— nopack_strings

— source

— nosource

— junptabl e_nenory

A-4

SC100 C Compiler

Migrating Code Developed for DSP56600

e Interrupt handlers: The SC100 C Compiler pragmai nt er r upt performs the function of both
_fast_interrupt and _| ong_i nterrupt inthe DSP56600 environment.

e Storage specifiers: The DSP56600 compilers support a number of storage specifiers, which are
either not used in the SC100 environment, or are specified at link time, as shown in Table A-6:

Table A-6. DSP56600 Storage Specifiers

Storage DSP56600 Compiler SC100 C Compiler

X memory X Not applicable

Y_memory Y Not applicable

Program memory P Not applicable

L memory L Not applicable

Lowest 64 words in data _hear Not applicable

memory

Internal memory _internal Specified at link time
External memory _external Specified at link time
Absolute address for global _at Specified at link time in the
variable application configuration file

e Miscellaneous: Table A-7 outlines some further differences between the two compilers:
Table A-7. DSP56600 Miscellaneous Differences

Description DSP56600 Compiler SC100 C Compiler
Wrap-around semantics for _nosat Not applicable
fractional data

Force DSP56300 GNU _compatible Not applicable

calling convention

Circular buffer support _circ Addressing calculations using
the C modulo (%) operator

SC100 C Compiler A-5

Migrating from Other Environments

A.3 Migrating Code Developed for TI6xx

The following differences should be considered when using the compiler with code devel oped for the
Tl6xx family of compilers:

Data Types: T16xx compilers map theinteger typel ong to 40 bits. The compiler definestheinteger
typel ong as 32 bits. C code that relies on the fact that type | ong is 40 bits wide must be modified
before it can be migrated.

Keywords: The TI6xx keywordscr egi st er, near andf ar are not supported by the compiler.
When including the migration header file, these keywords are accepted but have no effect on the
compilation results.

TheTI6xx keywordsi nt er r upt andi nl i ne are supported, but areimplemented differently, using
#pragmai nl i ne and#pragmai nt er r upt . Asaresult, no automatic translation is provided. The
code must be modified to use the pragmas supported by the compiler. For further information, see
Section 3.4.5, “Pragmas,” on page 3-52.

Pragmas: TI6xx pragmas areignored. Warnings are issued, but the correctness of the compilation
is not affected.

Inlined assembly code: By definition, inlined assembly codeis not portable from one environment
to another. The SC100 Assembler is unable to recognize inlined TI16xx assembly code, and issues
errors.

Intrinsic functions. The TI6xx intrinsic functions listed in the por t c6xt 0SC1. h header file are
supported. These are functionally equivalent to their corresponding T16xx intrinsic functions, but
their performance may be significantly affected.

A-6

SC100 C Compiler

A

abort environment function 7-17
abs integer arithmetic function 7-15
abs sintrinsic function 3-47, 7-21
acos trigonometric function 7-9
add intrinsic function 3-47, 7-21
align #pragma 3-53
Alignment

bit-fields 3-40

variables 3-59
-ansi shell option 3-12, 3-20
Application configuration file 6-13

binding section 6-16

overlay section 6-17

schedule section 6-14
Application entry point 6-3
-arch shell option 3-13
Arithmetic

fixed point 3-40

floating point 3-40

fractional 3-42

integer 3-42
asctime time function 7-20
asin trigonometric function 7-9
asm statement 4-2
Assembly functions 4-7
Assembly instruction inlining

asm statement 4-2
Assembly instructions

inlining sequence 4-2

inlining single instruction 4-1
atan trigonometric function 7-9
atan2 trigonometric function 7-9
atexit environment function 7-17
atof string conversion function 7-16
atoi string conversion function 7-16
atol string conversion function 7-16

B

Bare board startup 6-2
Bare board startup code 6-1
Basic block 5-2, 5-26
-be shell option 3-13, 3-25, 3-38, 3-40, 3-41
Big-endian mode 3-25
Binding section
application configuration file 6-16
Bit-fields 3-40

Index

BitReverseUpdate intrinsic function 3-50, 7-21
Built-in intrinsic functions 7-21

C

C environment startup 6-3
C environment startup code 6-1
C language
dialects 3-26
extensions 3-26
K&R 3-31
PCC 3-31
C language options 3-20
-C shell option 3-11, 3-16
-c shell option 3-11, 3-14
Call tree 6-14
Calling convention
stack-based 6-19
stack-less 6-21
calloc memory allocation function 7-15
ceil function 7-10
-cfe shell option 3-11, 3-14
Character typing 7-2
clearerr stream function 7-13
clock time function 7-20
clock_t time function 7-20
Code
linear 5-3
migrating from other environments A-1
parallelized 5-3
Command file 3-10, 3-15
Command line 3-9
syntax 3-9
Common subexpression elimination 5-17
Comparison functions 7-18
Compatibility clause 6-17
Compilation process 1-4, 3-2
Composed variable loop 5-13
Concatenation functions 7-18
Conditional execution 5-26
Configuration
memory map 6-10
startup code 6-4
Constant folding 5-18
Control options 3-10
Conversion functions 7-3
Copying functions 7-18
cos trigonometric function 7-9
cosh hyperbolic function 7-9

Index

Cross-file optimization 5-4, 5-7, 5-35
-crt shell option 3-13, 3-25

ctime time function 7-20

ctype.h library 7-1, 7-2

D

-D shell option 3-11, 3-17
D_add intrinsic function 3-48, 7-21
D_cmpeq intrinsic function 3-48, 7-21
D_cmpgt intrinsic function 3-48, 7-21
D_extract_hintrinsic function 3-48, 7-21
D_extract_| intrinsic function 3-48, 7-21
D_mac intrinsic function 3-48, 7-21
D_msu intrinsic function 3-48, 7-21
D_mult intrinsic function 3-48, 7-21
D_round intrinsic function 3-48, 7-21
D_sat intrinsic function 3-48, 7-21
D_setintrinsic function 3-48, 7-22
D_subintrinsic function 3-48, 7-22
Data allocation

static 6-10
Datatypes 3-36

bit-fields 3-40

character 3-37

double precision fractional 3-45

extended precision fractional 3-45

floating point 3-39

fractional long 3-45

fractional representation 3-40

fractional short 3-45

integer 3-38

pointers 3-40
-dc shell option 3-13, 3-22
-de shell option 3-12, 3-22
Dead assignment

elimination 5-19
Dead code

elimination 5-19
Dead storage

elimination 5-19
debug intrinsic function 3-50, 7-22
debugev intrinsic function 3-50, 7-22
Delay dots 5-22
Dependencies

between instructions 5-3
Dependency 5-8
di intrinsic function 3-50, 7-22
Diadects

C language 3-26
difftime time function 7-20
div integer arithmetic function 7-15
div_sintrinsic function 3-47, 7-22
-dL shell option 3-13, 3-22
-dL1 shell option 3-13, 3-22

-dL2 shell option 3-13, 3-22
-dL 3 shell option 3-13, 3-22
-dm shell option 3-13, 3-22
-do shell option 3-13, 3-22
Double precision 3-46
DSP56600 compiler
differences A-2
header file A-1, A-2
migrating code A-1, A-2
-dx shell option 3-13, 3-22
Dynamic loop 5-11
Dynamic memory allocation 6-9

E

-E shell option 3-11, 3-14
@ intrinsic function 3-50, 7-22
Elimination
dead assignment 5-19
dead code 5-19
dead storage 5-19
jump-to-jump 5-19
subexpression 5-17
EndBitReverse intrinsic function 3-50, 7-22
Entry points 6-14
Environment functions 7-17
Environment variables 3-9
Execution sets 5-3
parallelized 5-8
Execution units 5-3
exit environment function 7-17
exp function 7-10
Exponential functions 7-10
Extended 3-49
Extended precision 3-45
Extensions 3-7, 3-18
C language 3-26
external #pragma 3-53
External function 3-55
extract_hintrinsic function 3-48, 7-22
extract_| intrinsic function 3-48, 7-22

F

-F shell option 3-11, 3-15
fabs function 7-10

fclose stream function 7-13
feof stream function 7-13
ferror stream function 7-13
fflush I/O function 7-14
fgetc input function 7-12
fgetpos stream function 7-13
File extensions 3-7, 3-18
File types 3-7

Finalization code 6-1, 6-3

-2

Index

float.h library 7-1, 7-4
Floating point arithmetic 3-40
Floating point characteristics 7-4
Floating point math 7-9
floor function 7-10
fmod function 7-10
fopen /O function 7-14
fprintf output function 7-14
fputc output function 7-14
fputs output function 7-14
Fractional
arithmetic 3-42
constants 3-46
representation 3-40
values 3-46
fread input function 7-12
free memory alocation function 7-15
freopen stream function 7-13
frexp function 7-10
fscanf input function 7-12
fseek stream function 7-13
fsetpos stream function 7-13
ftell stream function 7-13
Function inlining 5-16
Functions
built-in intrinsic 7-21
comparison 7-18
concatenation 7-18
conversion 7-3
copying 7-18
environment 7-17
exponential 7-10
external 3-55
hyperbolic 7-9
1/0 7-14
input 7-12
integer arithmetic 7-15
intrinsic 3-45, 3-47, 7-21
logarithmic 7-10
memory allocation 7-15
multibyte character 7-17
output 7-14
power 7-10

pseudo random number generation 7-16

search 7-19

searching 7-16

sorting 7-16

stream 7-13

string 7-17

string conversion 7-16

testing 7-3

time 7-20

trigonometric 7-9
fwrite output function 7-14

G

-g shell option 3-12, 3-20
Generd utilities 7-15
getc input function 7-12
getchar input function 7-12
getenv environment function 7-17
gets output function 7-14
Global variables 6-17
gmtime time function 7-20
Guidelines

optimizer 5-35

H

-h shell option 3-11, 3-15
Hardware loops 6-24
Hardware registers
initialization 6-2
Header file
T16xx compiler A-1
Heap 6-9
Hyperbolic functions 7-9

-| shell option 3-11, 3-17
I/O functions 7-14
1/0 services
low level 6-3
termination 6-3
illegal intrinsic function 3-50, 7-22
Includefiles 3-17
InitBitReverse intrinsic function 3-50, 7-22
Initialization
M registers 6-2
status registers 6-2
variables 3-25, 6-3
Initialization code 6-1, 6-3
Initializing variables with fractional values 3-46
inline #pragma 3-53
Inlining 3-54
seguence of assembly instructions 4-2
single assembly instruction 4-1
Input file extension 3-18
Input functions 7-12
Instruction scheduling 5-22
Integer arithmetic 3-42
Integer arithmetic functions 7-15
Integer characteristics 7-8
interrupt #pragma 3-53
Interrupt entry 6-16, 6-23
Interrupt handler 3-56, 6-14, 6-23
Interrupt vector 6-2, 6-16, 6-23
Interrupts 6-3
Intrinsic functions 3-45

Index

architecture primitives 3-50
assembly instruction architecture primitives 3-50
bit reverse addressing 3-50
double precision fractional arithmetic 3-48
fractional arithmetic 3-47
fractional arithmetic with guard bits 3-49
long fractional arithmetic 3-48

Invariant code loop 5-17

isalnum testing function 7-3

isalpha testing function 7-3

iscntrl testing function 7-3

isdigit testing function 7-3

isgraph testing function 7-3

islower testing function 7-3

ISO libraries 7-1

isprint testing function 7-3

ispunct testing function 7-3

isspace testing function 7-3

isupper testing function 7-3

isxdigit testing function 7-3

J
Jump-to-jump elimination 5-19
K

K&R mode 3-31
-kr shell option 3-12, 3-20

L

L_absintrinsic function 3-48, 7-22
L_add intrinsic function 7-22
L_deposit_hintrinsic function 3-48, 7-22
L_deposit_| intrinsic function 3-48, 7-22
L_macintrinsic function 3-47, 7-22
L_max intrinsic function 3-48, 7-22
L_minintrinsic function 3-48, 7-22
L_msu intrinsic function 3-47, 7-23
L_mult intrinsic function 7-23
L_negate intrinsic function 3-48, 7-23
L_rol intrinsic function 3-50, 7-23
L_ror intrinsic function 3-50, 7-23
L_satintrinsic function 3-48, 7-23
L_shl intrinsic function 3-48, 7-23
L_shrintrinsic function 3-48, 7-23
L_shr_rintrinsic function 3-48, 7-23
L_subintrinsic function 3-48, 7-23
labsinteger arithmetic function 7-15
L-add intrinsic function 3-48
Idexp function 7-10
Idiv integer arithmetic function 7-15
Libraries

ISO 7-1

non-1SO 7-1

limits.h library 7-1, 7-8
Linear code 5-3
Linker command file 6-3, 6-6
Listing files 3-22
Little-endian 3-25
Little-endian mode 3-41
Little-endian representation 3-38, 3-40
L-mult intrinsic function 3-48
localehlibrary 7-1, 7-8
localeconv locales function 7-8
Localesfunctions 7-8
localtime time function 7-20
log function 7-10
log10 function 7-10
Logarithmic functions 7-10
Logical memory 6-11
Loop
composed variable 5-13
dynamic 5-11
multi-step 5-12
simple 5-10
square 5-13
transformations 5-10
Loop count 3-57
loop_count #pragma 3-53
Loops
hardware 6-24
Low level transformations (LLT) 5-20

M

M registers

initialization 6-2

value 6-24
-M shell option 3-11, 3-16
-mashell option 3-13, 3-24
mac _r intrinsic function 3-47, 7-23
Machine configuration file 6-11
Macros 3-17

fractional values 3-46

predefined 3-61

preprocessor 3-17
Main entry point 6-14
malloc memory allocation function 7-15
mark intrinsic function 3-50, 7-23
math.h library 7-1, 7-9
max intrinsic function 3-47, 7-23
-mb shell option 3-13, 3-25
-mc shell option 3-13, 3-24
-mem shell option 3-13, 3-25
memchr search function 7-19
memcmp comparison function 7-18
memcpy copying function 7-18
memmove copying function 7-18
Memory

Index

logical 6-11

mode 3-25, 6-6

physica 6-11
Memory allocation

dynamic 6-9

functions 7-15
Memory layout

default 6-7
Memory map

configuration 6-10

default values 6-8

initialization 6-3
Memory model

big 6-5

small 6-6
Memory space 6-11
memset function 7-19
Messages 3-22
-MH shell option 3-11, 3-16
Migrating code A-1
min intrinsic function 3-47, 7-23
mktime time function 7-20
Mode

K&R/PCC 3-31
modf function 7-10
mpysu intrinsic function 3-50, 7-24
mpyus intrinsic function 3-50, 7-24
mpyuu intrinsic function 3-50, 7-23
-mrom shell option 3-13
msu_r intrinsic function 3-47, 7-24
mult intrinsic function 3-47, 7-24
mult_r intrinsic function 3-47, 7-24
Multibyte character functions 7-17
Multiple execution units 5-3
Multi-step loop 5-12

N

-n shell option 3-13, 3-23

negate intrinsic function 3-47, 7-24
noinline #pragma 3-53

Non-cross file optimization 3-4
Non-1S0 libraries 7-1

Nonlocal jumps 7-11

norm_| intrinsic function 3-48, 7-24
norm_sintrinsic function 3-47, 7-24

O

-0 shell option 3-11, 3-19

-O0 shell option 3-12, 5-5

-O1 shell option 3-12, 5-5, 5-9
-02 shell option 3-12, 5-5, 5-20
-Og shell option 3-12, 5-5, 5-35
Optimization

crossfile 1-2, 3-4, 5-4, 5-7, 5-35
for size 5-7, 5-33
levels 5-4
non-cross file 3-4
options 5-4, 5-5
target independent 5-8, 5-9
target specific 5-8, 5-20
Optimizer
guidelines 5-35
invoking 5-6
Options
C language 3-20
control 3-10
extensions 3-18
messages 3-22
output files 3-19
shell 3-11
-Os shell option 3-12, 5-5
Output files 3-19
Output functions 7-14
Overlay section
application configuration file 6-17
Overlay specification 6-14

P

Parallelized code 5-3
Parallelized execution sets 5-8
Passing options 3-21
perror output function 7-14
Physical memory 6-11
Pipeline restrictions 5-23
Pointers 3-40
Post-increment detection 5-28
pow function 7-10
Power functions 7-10
Pragmas
#pragmaalign 3-53, 3-60
#pragma external 3-53, 3-55
#pragmainline 3-53
#pragmainterrupt 3-56
#pragmaloop count 3-53, 3-58
#pragma noinline 3-53, 3-54
#pragma profile 3-53, 3-56, 3-57
#pragma save 3-53
#pragma save_ctxt 3-54
placement 3-52
syntax 3-52
Predefined macros 3-61
Prefix grouping 5-33
Preprocessing options 3-16
Preprocessor macros 3-17
printf output function 7-14
Process time 7-20
profile #pragma 3-53

Index

Profile value 3-56

prototype.h 7-1

prototype.h library 7-1, 7-21

Pseudo random number generation functions 7-16
putc output function 7-14

putchar output function 7-14

puts output function 7-14

Q
-q shell option 3-13, 3-23
R

-r shell option 3-11, 3-19
rand pseudo random number generation function 7-16
realloc memory allocation function 7-15
remove stream function 7-13
rename stream function 7-13
Reporting 3-23
Reset interrupt vector 6-2
rewind stream function 7-13
round intrinsic function 3-47, 7-24
Runtime
environment 6-1
startup code 6-1

S

-Sshell option 3-11, 3-14
saturate intrinsic function 3-47, 7-24
save_ctxt #pragma 3-53
-sc shell option 3-12, 3-20
scanf input function 7-12
Schedul e section
application configuration file 6-14
Search functions 7-19
Searching functions 7-16
set2cnvrm intrinsic function 3-50, 7-24
set2crm intrinsic function 3-50, 7-25
setbuf stream function 7-13
setjimp.h library 7-1, 7-11
setlocale locales function 7-8
setnosat intrinsic function 3-50, 7-25
setsat32 intrinsic function 3-50, 7-25
setvbuf stream function 7-13
Shell 1-3, 3-1
Shell command file 3-15
Shell command line 3-9
Shell options
behavior control 3-11
C language 3-12
file extension override 3-11
hardware model and configuration 3-13
optimization pragma and code 3-12
output filename and location 3-11

output of listing files and messages control 3-12
pass-through 3-12
preprocessing 3-11
stop processing 3-14
summary 3-11
shl intrinsic function 3-47, 7-25
shr intrinsic function 3-47, 7-25
shr_rintrinsic function 3-47, 7-25
Signal handling 7-11
signal.h library 6-23, 7-1, 7-11
Simple loop 5-10
sin trigonometric function 7-9
sinh hyperbolic function 7-9
Software pipelining 5-23
Sorting functions 7-16
Space optimization 5-7, 5-33
Specul ative execution 5-27
sprintf output function 7-14
sgrt function 7-10
Square loop 5-13
srand pseudo random number generation function 7-16
sscanf input function 7-12
Stack
frame 6-22
memory allocation 6-9
pointer 6-9, 6-19
space 6-22
start address 6-3, 6-9
Stack-based
calling convention 6-19
Stack-less
calling convention 6-21
Standard definitions 7-12
Startup code 6-1
bare board 6-1
C environment 6-1
configuration 6-4
Static data allocation 6-10
Status registers
default settings 6-2
initialization 6-2
stdarg.h library 7-1, 7-11
stddef.h library 7-1, 7-12
stderr stream function 7-13
stdin stream function 7-13
stdio.h library 7-1, 7-12
stdlib.h library 7-1, 7-15
stdout stream function 7-13
stop intrinsic function 3-50, 7-25
strcat concatenation function 7-18
strchr search function 7-19
stremp comparison function 7-18
strcoll comparison function 7-18
strcpy copying function 7-18

Index

strespn search function 7-19

Stream functions 7-13

Strength reduction 5-10, 5-32
strerror function 7-19

strftime time function 7-20

String conversion functions 7-16
String functions 7-17

string.h library 7-1, 7-17

strlen function 7-19

strncat concatenation function 7-18
strncmp comparison function 7-18
strnepy copying function 7-18
strpbrk search function 7-19

strrchr search function 7-19

strspn search function 7-19

strstr search function 7-19

strtod string conversion function 7-16
strtok search function 7-19

strtol string conversion function 7-16
strtoul string conversion function 7-16
strxfrm comparison function 7-18
sub intrinsic function 3-47, 7-25
Subexpression elimination 5-17
Symbolic labels 4-10

System context 3-54

T

tan trigonometric function 7-9
tanh hyperbolic function 7-9
target architecture 3-24
Target-independent optimizations 5-9
Target-specific optimizations 5-20
Target-specificl optimizations 5-8
Target-specificl peephole 5-29
Task entry point 6-14
Termination

1/O services 6-3
Testing functions 7-3
T16xx compiler

header file A-1

migrating code A-1
Time constant 7-20
time function 7-20
Time functions 7-20
time.hlibrary 7-1, 7-20
time_t time function 7-20
Timer 6-2
tolower conversion function 7-3
toupper conversion function 7-3
Transformations

loop 5-10
trap intrinsic function 3-50, 7-25
Trigonometric functions 7-9

U

-U shell option 3-11, 3-17
ungetc 1/0 function 7-14
-usc shell option 3-20

\Y,

-v shell option 3-13, 3-23
Variable arguments 7-11
Variables

alignment 3-59

initialization 6-3
vfprintf output function 7-14
vprintf output function 7-14
vsprintf output function 7-14

w

-w shell option 3-13, 3-23

wait intrinsic function 3-50, 7-25

-Wall shell option 3-13, 3-23

Warnings 3-23

-Wg shell option 3-13, 3-23

-Wj shell option 3-13, 3-23

WORD16 macro 3-46

WORD32 macro 3-46

Word40 extended precision fractional 3-45
Word64 double precision fractional 3-46

X

X_absintrinsic function 3-49, 7-25

X _add intrinsic function 3-49, 7-25
X_cmpeq intrinsic function 3-49, 7-25
X_cmpgt intrinsic function 3-49, 7-25
X_extend intrinsic function 3-49, 7-25
X_extract_hintrinsic function 3-49, 7-25
X_extract_| intrinsic function 3-49, 7-25
X_mac intrinsic function 3-49, 7-25
X_msuintrinsic function 3-49, 7-26
X_multintrinsic function 3-49, 7-26
X_normintrinsic function 3-49, 7-26
X_orintrinsic function 3-49, 7-26
X_rol intrinsic function 3-49, 7-26
X_ror intrinsic function 3-49, 7-26
X_round intrinsic function 3-49, 7-26
X_sat intrinsic function 3-49, 7-26
X_setintrinsic function 3-49, 7-26
X_shl intrinsic function 3-49, 7-26
X_shrintrinsic function 3-49, 7-26
X_subintrinsic function 3-49, 7-26
X_trunc intrinsic function 3-49, 7-26
-Xasm shell option 3-12, 3-21

-xasm shell option 3-11, 3-18

-xc shell option 3-11, 3-18

-XInk shell option 3-12, 3-21

Index

-xobj shell option 3-11, 3-18

-8 Index

STAR

CORE

BRIGHTER" DSP TECHNOLOGY!

How to reach us:

USA/Europe/Locations Not Listed:

Motorola Literature Distribution
P.O. Box 5405

Denver, Colorado 80217

1 (800) 441-2447

Asia/Pacific

Motorola Semiconductors H.K. Ltd.,

Silicon Harbour Centre, 2 Dai King Street, Tai Po
Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

Japan

Motorola Japan, Ltd.,

SPS, Technical Information Center

3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573
81-3-3440-3569

Motorola Fax Back System (Mfax™)
1 (800) 774-1848; RMFAXO@email.sps.mot.com

DSP Helpline
dsphelp@dsp.sps.mot.com

Technical Information Center
1 (800) 521-6274

Internet
http://www.motorola-dsp.com

Agere Systems Internet
http://www.agere.com

Email
docmaster@micro.lucent.com

N. America

Agere Systems, Inc.

1-800-372-2447, FAX 610-712-4106

In CANADA: 1-800-553-2448, FAX 610-712-4106

Asia/Pacific
Agere Systems Singapore Pte. Ltd., Singapore
Tel. (65) 778 8833, FAX (65) 777 7495

China
Agere Systems (Shanghai) Co., Ltd., Shanghai
Tel. (86) 21 5047 1212, Fax (86) 21 5047 2266

Japan
Agere Systems Japan, Ltd., Shinagawa-ku, Japan
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700

Europe Dataline
Tel. (44) 7000 582 368, FAX (44) 1189 328 148

MOTOROLA \J

digital dna-

systems

08‘ere

	SC100 C Compiler
	Cover Page
	Copyright Page
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	About This Book
	Chapter�1 Introduction
	1.1 Overview of the SC100 C Compiler
	1.2 The Cross�File Optimization Approach
	1.3 Compiling Applications
	1.3.1 The Compiler Shell Program
	1.3.2 Stages in the C Compilation Process

	Chapter�2 Getting Started
	2.1 A Quick Start
	2.1.1 Creating and Executing a Program

	Chapter�3 Using the SC100 C Compiler
	3.1 The Shell Program
	3.1.1 The C Compilation Process
	3.1.2 Cross�File Optimization
	3.1.3 File Types and Extensions
	3.1.4 Environment Variables

	3.2 Invoking the Shell
	3.2.1 Command Line Syntax
	3.2.1.1 Command Line Syntax Rules
	3.2.1.2 Command Files

	3.3 Shell Control Options
	3.3.1 Controlling the Behavior of the Shell
	3.3.1.1 Controlling where the shell stops processing
	3.3.1.2 Specifying a shell command file
	3.3.1.3 Displaying the shell Help page

	3.3.2 Specifying Preprocessing Options
	3.3.2.1 Changing preprocessed output
	3.3.2.2 Defining and undefining preprocessor macros
	3.3.2.3 Adding directories to the #include file path

	3.3.3 Overriding Input File Extensions
	3.3.4 Output Filename and Location Options
	3.3.5 Specifying C Language Options
	3.3.5.1 Defining the language version
	3.3.5.2 Adding debugging information to files
	3.3.5.3 Changing the default char sign setting
	3.3.5.4 Indicating fractional data-types in saturation

	3.3.6 Passing Options Through to Specific Tools
	3.3.7 Setting the Options for Listings and Messages
	3.3.7.1 Generating listing files
	3.3.7.2 Controlling the type of information displayed
	3.3.7.3 Suppressing warnings
	3.3.7.4 Reporting all remarks and warnings

	3.3.8 Specifying the Hardware Model and Configuration
	3.3.8.1 Defining the architecture
	3.3.8.2 Configuration and Startup files
	3.3.8.2.1 Defining specific configuration and startup files

	3.3.9 Specifying modes
	3.3.9.1 Specifying big memory mode
	3.3.9.2 Specifying tiny memory mode
	3.3.9.3 Copying initialized variables from ROM
	3.3.9.4 Specifying big-endian mode

	3.4 Language Features
	3.4.1 C Language Dialects
	3.4.1.1 Standard Extensions
	3.4.1.1.1 Preprocessor extensions
	3.4.1.1.2 Syntax
	3.4.1.1.3 Declarations
	3.4.1.1.4 Types Extensions
	3.4.1.1.5 Expressions and statements

	3.4.1.2 K&R/PCC mode
	3.4.1.2.1 K&R/PCC mode preprocessor differences
	3.4.1.2.2 K&R/PCC mode syntax differences
	3.4.1.2.3 K&R/PCC mode differences for declarations
	3.4.1.2.4 K&R/PCC mode type differences
	3.4.1.2.5 K&R/PCC mode differences: expressions and statements
	3.4.1.2.6 K&R/PCC differences: remaining incompatibilities

	3.4.2 Types and Sizes
	3.4.2.1 Characters
	3.4.2.2 Integers
	3.4.2.3 Floating point
	3.4.2.4 Fractional representation
	3.4.2.5 Pointers
	3.4.2.6 Bit-fields

	3.4.3 Fractional and Integer Arithmetic
	3.4.4 Intrinsic Functions
	3.4.4.1 Data types for intrinsic functions
	3.4.4.1.1 Extended precision fractional
	3.4.4.1.2 Double precision fractional
	3.4.4.1.3 Fractional constants
	3.4.4.1.4 Initializing variables with fractional values

	3.4.4.2 Intrinsic function categories
	3.4.4.3 Intrinsic functions examples

	3.4.5 Pragmas
	3.4.5.1 Syntax
	3.4.5.2 Placement
	3.4.5.3 Pragmas which apply to functions
	3.4.5.3.1 Forcing or disabling function inlining
	3.4.5.3.2 Saving the entire context of the system
	3.4.5.3.3 Defining a function as external
	3.4.5.3.4 Defining a function as an interrupt handler

	3.4.5.4 Pragmas which apply to statements
	3.4.5.4.1 Specifying a profile value
	3.4.5.4.2 Defining a loop count

	3.4.5.5 Pragmas which apply to variables
	3.4.5.5.1 Alignment of variables

	3.4.6 Predefined Macros

	Chapter�4 Interfacing C and Assembly Code
	4.1 Inlining a Single Assembly Instruction
	4.2 Inlining a Sequence of Assembly Instructions
	4.2.1 Guidelines for Inlining Assembly Code Sequences
	4.2.2 Defining an Inlined Sequence of Assembly Instructions

	4.3 Calling an Assembly Function in a Separate File
	4.3.1 Writing the Assembly Code
	4.3.2 Calling the Assembly Function
	4.3.3 Integrating the C and Assembly Files

	4.4 Including Offset Labels in the Output File

	Chapter�5 Optimization Techniques and Hints
	5.1 Optimizer Overview
	5.1.1 Basic Blocks
	5.1.2 Linear and Parallelized Code
	5.1.3 Optimization Levels and Options

	5.2 Using the Optimizer
	5.2.1 Invoking the Optimizer
	5.2.2 Optimizing for Space
	5.2.3 Using Cross�File Optimization

	5.3 Optimization Types and Functions
	5.3.1 Dependencies and Parallelization
	5.3.2 Target�Independent Optimizations
	5.3.2.1 Target-Independent Strength reduction (loop transformations)
	5.3.2.1.1 Simple loops
	5.3.2.1.2 Dynamic loops
	5.3.2.1.3 Multi-step loops
	5.3.2.1.4 Composed variable loops
	5.3.2.1.5 Square loops
	5.3.2.1.6 Triangular loops

	5.3.2.2 Function inlining
	5.3.2.3 Common subexpression elimination
	5.3.2.4 Loop invariant code
	5.3.2.5 Constant folding and propagation
	5.3.2.6 Jump-to-jump elimination
	5.3.2.7 Dead code elimination
	5.3.2.8 Dead storage/assignment elimination

	5.3.3 Target�Specific Optimizations
	5.3.3.1 Instruction scheduling
	5.3.3.1.1 Filling delay slots
	5.3.3.1.2 Avoiding pipeline restrictions

	5.3.3.2 Target�specific software pipelining
	5.3.3.3 Conditional execution and predication
	5.3.3.4 Speculative execution
	5.3.3.5 Post-increment detection
	5.3.3.6 Target�specific peephole optimization
	5.3.3.7 Extract peephole optimization
	5.3.3.8 Target-Specific Strength Reduction
	5.3.3.8.1 Multiply Strength Reduction

	5.3.3.9 Prefix grouping

	5.3.4 Space Optimizations
	5.3.4.1 Code Sinking Optimization

	5.3.5 Cross�File Optimizations
	5.3.5.1 Rules for using Cross-file Optimization

	5.4 Guidelines for Using the Optimizer
	5.4.1 Partial Summation Techniques
	5.4.2 Multisample Techniques
	5.4.2.1 Multisample implementation issues
	5.4.2.2 Implementation example

	5.4.3 General Hints
	5.4.3.1 Software pipelining
	5.4.3.2 Passing and returning large structs
	5.4.3.3 Arithmetic operations
	5.4.3.4 Local variables
	5.4.3.5 Resource limitations

	5.5 Optimizer Assumptions

	Chapter�6 Runtime Environment
	6.1 Startup Code
	6.1.1 Bare Board Startup Code
	6.1.2 C Environment Startup Code
	6.1.2.1 C environment initialization code
	6.1.2.2 Initialization of variables
	6.1.2.3 C environment finalization code
	6.1.2.4 Low level I/O services

	6.1.3 Configuring Your Startup Code

	6.2 Memory Models
	6.2.1 Small and Tiny Memory Models
	6.2.2 Big Memory Model
	6.2.3 Linker Command Files

	6.3 Memory Layout and Configuration
	6.3.1 Stack and Heap Configuration
	6.3.1.1 Runtime stack
	6.3.1.2 Dynamic memory allocation (heap)

	6.3.2 Static Data Allocation
	6.3.3 Configuring the Memory Map
	6.3.3.1 Memory map configuration example

	6.3.4 Machine Configuration File
	6.3.4.1 Defining the memory configuration

	6.3.5 Application Configuration File
	6.3.5.1 File structure and syntax
	6.3.5.2 Schedule section
	6.3.5.3 Binding section
	6.3.5.4 Overlay section

	6.4 Calling Conventions
	6.4.1 Stack Pointer
	6.4.2 Stack-Based Calling Convention
	6.4.3 Optimized Calling Sequences
	6.4.4 Stack Frame Layout
	6.4.5 Interrupt Handlers
	6.4.6 Frame Pointer and Argument Pointer
	6.4.7 Hardware Loops
	6.4.8 Operating Modes

	6.5 Saturation
	6.5.1 Saturation switches
	6.5.2 Saturation states

	Chapter�7 Runtime Libraries
	7.1 Providing Runtime Libraries
	7.1.1 Using Libraries with debug
	7.1.2 Building the Libraries

	7.2 Character Typing and Conversion (ctype.h)
	7.2.1 Testing Functions
	7.2.2 Conversion Functions

	7.3 Floating Point Characteristics (float.h)
	7.3.1 Floating Point Library Interface (fltmath.h)
	7.3.1.1 Round_Mode
	7.3.1.2 FLUSH_TO_ZERO
	7.3.1.3 IEEE_Exceptions
	7.3.1.4 EnableFPExceptions

	7.4 Integer Characteristics (limits.h)
	7.5 Locales (locale.h)
	7.6 Floating Point Math (math.h)
	7.6.1 Trigonometric Functions
	7.6.2 Hyperbolic Functions
	7.6.3 Exponential and Logarithmic Functions
	7.6.4 Power Functions
	7.6.5 Other Functions

	7.7 Nonlocal Jumps (setjmp.h)
	7.8 Signal Handling (signal.h)
	7.9 Variable Arguments (stdarg.h)
	7.10 Standard Definitions (stddef.h)
	7.11 I/O Library (stdio.h)
	7.11.1 Input Functions
	7.11.2 Stream Functions
	7.11.3 Output Functions
	7.11.4 Miscellaneous I/O Functions

	7.12 General Utilities (stdlib.h)
	7.12.1 Memory Allocation Functions
	7.12.2 Integer Arithmetic Functions
	7.12.3 String Conversion Functions
	7.12.4 Searching and Sorting Functions
	7.12.5 Pseudo Random Number Generation Functions
	7.12.6 Environment Functions
	7.12.7 Multibyte Character Functions

	7.13 String Functions (string.h)
	7.13.1 Copying Functions
	7.13.2 Concatenation Functions
	7.13.3 Comparison Functions
	7.13.4 Search Functions
	7.13.5 Other Functions

	7.14 Time Functions (time.h)
	7.14.1 Time Constant
	7.14.2 Process Time

	7.15 Built-in Intrinsic Functions (prototype.h)

	Appendix�A Migrating from Other Environments
	A.1 Code Migration Overview
	A.2 Migrating Code Developed for DSP56600
	A.3 Migrating Code Developed for TI6xx

