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About This Book

This manual describes the C compiler for the StarCore SC100 generation of digital signal processor (DSP) 
cores (SC110 and SC140), and provides detailed guidelines for its use.

Audience
This manual is intended for systems software developers, applications developers, system hardware 
developers, and microprocessor designers.

Organization
This manual is organized into seven chapters and one appendix, as follows:

• Chapter 1, “Introduction,” provides an overview of the SC100 C compiler and outlines the SC100 C 
compilation process.

• Chapter 2, “Getting Started,” provides the essential information and instructions that enable you to 
start using the SC100 C compiler.

• Chapter 3, “Using the SC100 C Compiler,” explains how to use the compiler, and describes the 
options and features that it supports.

• Chapter 4, “Interfacing C and Assembly Code,” describes the support provided by the compiler for 
interfacing between C source code and assembly code, and provides instructions for using this 
interface.

• Chapter 5, “Optimization Techniques and Hints,” explains how the SC100 optimizer operates, and 
describes the optimization levels and individual optimizations that can be applied.

• Chapter 6, “Runtime Environment,” describes the startup code used by the compiler, the layout and 
configuration of memory, and the calling conventions that the compiler supports.

• Chapter 7, “Runtime Libraries,” describes the C libraries and I/O libraries supported by the SC100 
C compiler.

• Appendix A, “Migrating from Other Environments,” provides guidelines for migrating C code from 
other environments to the SC100 C compiler.
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Chapter 1
Introduction

The StarCore Technology Center has focuses on ensuring a wide selection of best-in-class development 
tools for StarCore-based System on Chip (SoC) products. The result is an unusually high level of support 
for a new architecture that includes multiple compilers, development environments, and real-time 
operating system software products.

Specifically, StarCore is developing baseline tools such as a C compiler, assembler, linker, and simulator. 
These common SC100 baseline tools will be featured in visually integrated development environments 
(IDEs) that Lucent Technologies and Motorola provide in support of their respective SC100 chip products. 
The IDEs include real-time source-level debugging and profiling tools.

1.1   Overview of the SC100 C Compiler
A key feature of the SC100 C compiler is its ability to generate code that is exceptionally compact, 
approaching the code density of the best RISC microprocessors while demonstrating high performance that 
is comparable to assembly code running on other DSPs. To achieve such a high performance, the compiler 
optimizes code for maximum parallelism in order to take full advantage of the core’s multiple execution 
units.

In addition to its extensive optimization capabilities, the compiler offers a host of other features that make 
it ideal for DSP software development, including:

• Conformance to the ANSI C standard

• Intrinsic function support for ITU/ETSI primitives: saturating, non-saturating, and double-precision 
arithmetic

• Runtime libraries and environments

• Easy integration of assembly code into C code
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1.2   The Cross-File Optimization Approach
The SC100 optimizer converts preprocessed source files into assembly output code, applying a range of 
code transformations that can significantly improve the efficiency of the executable program. The goal of 
the optimizer is to improve its performance in terms of execution time and/or code size by producing 
output code that is functionally equivalent to the original source code.

The method that traditional compilers use is to optimize each source file individually before compiling the 
optimized code and submitting all the compiled files to the linker. Because all the necessary information is 
not available when files are optimized individually, the compiler must make various assumptions, and is 
unable to produce the most efficient result.

To ensure optimal performance, the optimizer can take advantage of visibility of as much of the 
application as possible. The SC100 global binder links all modules into a single module on which all 
optimizations are performed. As a result of this approach, the performance of the optimizer is substantially 
improved, and the generated code is typically more efficient than if produced without cross-file 
optimization.

Chapter 5, “Optimization Techniques and Hints,” describes the optimization modes and functions in detail.
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Compiling Applications
1.3   Compiling Applications
The SC100 compilation process consists of a series of steps, starting from the submission of source files 
and options to the C Front End (CFE), through the creation of Intermediate Representation (IR) files, the 
optimization of these files, and the output of optimized assembly code for linking into the final executable 
program.

You can perform all these processes in one single step, using the compiler shell program.

1.3.1  The Compiler Shell Program
The Compiler’s shell provides a one-step command-line interface, in which you specify the files to be 
processed for each compilation. At each stage, a different tool accepts the input files according to their file 
extensions, processes them, and outputs the transformed code for processing by the next development tool.

By default, the compiler automatically progresses the input files through all the processing phases. The 
shell command line lets you select the exact development tools and processing stages that you require, and 
enables you to define any specific processing options, settings and default overrides that you need. 

The options that you specify in the command line control the operation of the shell and of the tools used in 
the application development process. These options either affect the behavior of the shell itself or the 
compiler dispatches the options to the different programs, which the shell invokes.

The shell accepts a wide range of option types, including those which perform specific actions, such as:

• generating a list of included files,

• dictating how to treat a source file, and 

• controlling specific aspects of the C language features. 

When you invoke the shell, the application development process automatically implements through all its 
various stages to the final production of the executable program.

Chapter 3, “Using the SC100 C Compiler,” provides a full description of the shell program and options.
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1.3.2  Stages in the C Compilation Process
Following is an outline of the steps involved in compiling C source files into an executable program. These 
stages are illustrated in the flow diagram shown in Figure 1-1 on page 1-5:

1. The shell is invoked with the list of the C source files and assembly files to be processed, and 
the various options to be applied.

2. The C Front End (CFE) identifies each C source file by its file extension, preprocesses the 
source files, converts the files into Intermediate Representation (IR) files, and passes these 
to the optimizer.

3. The high-level phase of the optimizer translates each intermediate representation file into an 
assembly ASCII file, and performs a number of target-independent optimizations. The 
optimizer extracts library files that were created in IR form, and included at this stage of 
processing. The optimization process also includes any relevant information contained in 
the application and machine configuration files.

4. The low-level phase of the optimizer carries out target-specific optimizations, and 
transforms the linear assembly code output by the previous phase into parallel assembly 
code.

5. At the end of the optimization, the compiler outputs the optimized assembly files to the 
assembler, joined together with any specified external assembly files.

6. The compiler outputs the assembly files to the linker. The linker combines the assembly 
object files, extracts any required object modules from the library, and produces the 
executable application.
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Compiling Applications
Figure 1-1.   The SC100 C Compilation Process
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Chapter 2
Getting Started

This example walks you through building and running a simple program using the SC100 C compiler. 

2.1   A Quick Start
Creating and executing a program includes the following three phases:

1. Writing the C source code, using the utility of your choice. In this example we will use a 
sample C source code file provided with your installation.

2. Compiling and linking the file, using the compiler shell.

3. Running the executable application you created.

2.1.1  Creating and Executing a Program
To create and execute a program: 

1. Locate the file hello.c in the $SCTOOLS_HOME/src/appnotes directory, where 
$SCTOOLS_HOME is your installation directory. Copy the hello.c file into your working 
directory. 

Example 2-1 shows the C source code contained in the hello.c file:

Example 2-1.   Sample source file: hello.c

#include <stdio.h>

void main()
{
 printf("Hello there!\n");
}

2. Type the following command, which instructs the shell program to compile and link the 
program:

scc -o hello.eld hello.c

3. Run the executable program, by typing:

sc100-sim -quiet -exec hello.eld

RESULT: The message Hello there! is displayed.

Congratulations! You successfully compiled, linked, and executed a program using the SC100 C compiler.
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Getting Started
Chapter 3, “Using the SC100 C Compiler,” describes the shell program and the various file types in detail, 
and explains how to use the many options and language features that the compiler supports.
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Chapter 3
Using the SC100 C Compiler

This chapter contains sections that explain how to use the SC100 C compiler, and describes the options and 
features that the compiler supports. The sections are:

• Section 3.1, “The Shell Program,” provides an overview of the compiler shell program, outlines the 
application development process and optimization modes, and lists the file types and environment 
variables that the shell recognizes.

• Section 3.2, “Invoking the Shell,” explains how to initiate execution of the shell.

• Section 3.3, “Shell Control Options,” describes the options for controlling the operation of the shell 
and the development tools.

• Section 3.4, “Language Features,” describes the supported extensions and modes, data types, 
intrinsic functions, pragmas, and predefined macros.

3.1   The Shell Program
The shell program controls the processing of C source files and other files into an executable application, 
through the preprocessing, compilation, optimization, assembly and linking stages. 

The shell provides a one-step command line interface, where you specify the files that you want processed 
for each compilation. At each stage a different tool accepts the input files according to their file extensions, 
processes them, and outputs the transformed code for processing by the next development tool.

By default, the input files automatically progress through all the processing phases. The command line 
enables you to select the exact development tools and processing stages that you require. You can also 
define any specific processing options, settings and default overrides that you need. 

Section 3.3, “Shell Control Options,” describes in detail the options that you can include in the command 
line to change the behavior of the shell and the specific processing tools at the relevant stages of the 
development process.
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3.1.1  The C Compilation Process
The following is an outline of the steps involved in compiling C source files into an executable program, as 
illustrated in the flow diagram shown in Figure 3-1 on page 3-3.

1. The shell is invoked with the list of the C source files and assembly files to be processed, and 
the various options to be applied.

2. The C Front End (CFE) identifies each C source file by its file extension, preprocesses the 
source files, converts the files into Intermediate Representation (IR) files, and passes these 
to the optimizer.

3. The high-level phase of the optimizer translates each intermediate representation file into an 
assembly ASCII file, and performs a number of target-independent optimizations. The 
optimization process also includes any relevant information contained in the application and 
machine configuration files.

4. The low-level phase carries out target-specific optimizations, and transforms the linear 
assembly code output by the previous phase into parallel assembly code. 

5. At the end of the optimization, the optimized assembly files are output to the assembler, 
assembled together with any specified external assembly files, and from there output to the 
linker. The linker combines the assembly object files, together with any specified external 
assembly files, extracts any required object modules from the library, and produces the 
executable application.
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Figure 3-1.   The C Compilation Process
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3.1.2  Cross-File Optimization
The SC100 optimizer converts preprocessed source files into assembly output code, applying a range of 
code transformations that can significantly improve the efficiency of the executable program. The goal of 
the optimizer is to improve its performance in terms of execution time and/or code size by producing 
output code that is functionally equivalent to the original source code.

The method that traditional compilers use is to optimize each source file individually, before compiling the 
optimized code, and then submit all the compiled files to the linker. Because not all the necessary 
information is available when files are optimized individually, the compiler must make various 
assumptions, and is unable to produce the most efficient result.

To ensure optimal performance, the optimizer takes advantage of visibility of as much of the application as 
possible. The SC100 global binder links all modules into a single module on which all optimizations can 
be performed. As a result of this cross-file approach, the performance of the optimizer substantially 
improves, and the generated code is typically more efficient than if produced without cross-file 
optimization.

Section 5.3.5, “Cross-File Optimizations,” on page 5-35, provides detailed information and rules for 
utilizing cross-file optimization.

Figure 3-2 on page 3-5, and Figure 3-3 on page 3-6, illustrate the different processing routes for traditional 
and cross-file optimization, respectively. 

Traditional optimization provides faster compilation, but produces less optimized code. This can be useful 
during the early stages of development, when you may need to compile different parts of the application 
separately.

Cross-file optimization produces more efficient code, but the optimization process itself is slower than 
traditional optimization.

By default, the shell compiles source files without cross-file optimization, for development purposes. You 
can choose to specify cross-file optimization when you invoke the shell.

Chapter 5, “Optimization Techniques and Hints,” describes the optimization modes and functions in detail.
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.

Figure 3-2.   Traditional Optimization

ASSEMBLER

Optimized

Code

OPTIMIZER

CFE

LINKER

IR file

ASSEMBLER

Optimized

Code

OPTIMIZER

CFE

IR file

ASSEMBLER

Optimized

Code

OPTIMIZER

CFE

IR file

ASSEMBLER

Optimized

Code

OPTIMIZER

CFE

IR file

ASSEMBLER

Optimized

Code

OPTIMIZER

CFE

IR file

...

...

...

...

...

...

C
Source file

C
Source file

C
Source file

C
Source file

C
Source file
SC100 C Compiler 3-5



Using the SC100 C Compiler
Figure 3-3.   Cross-File Optimization
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The Shell Program
3.1.3  File Types and Extensions
The shell program assumes that all items included in the command line that are not recognizable as options 
or option arguments are input file names. The extension for each file identifies the file type, and determines 
at which stage the shell will start processing the file. If none of the tools recognize the file extension, the 
shell treats the file as an input file to the linker.

The following table lists the file extensions and their corresponding file types, and shows which tool 
processes each file type.

Note: It is possible to cause the shell to process a file as if it were a different file type, as described in 
Section 3.3.3, “Overriding Input File Extensions.” 

The end result of the compilation process is an executable object file, with a file extension of .eld. 
Figure 3-4 on page 3-8 illustrates the assignment of file extensions at each stage of the shell processing 
cycle.

Table 3-1.   File Types and Extensions

Extension File Tool

.c C source file C Preprocessor

.h C header file

.i Preprocessed C source Front End

.obj IR language file Optimizer

.lib IR library Optimizer

.asm, .sl Assembly file Assembler

.eln Relocatable ELF object file Linker

.elb ELF library file Linker

.cmd Linker command file Linker
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Figure 3-4.   File Extensions in the Shell Cycle
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Invoking the Shell
3.1.4  Environment Variables
Each time the shell executes, it refers to certain environment variables that determine specific aspects of its 
behavior. These environment variables are defined during installation, and include the following:

3.2   Invoking the Shell
Invoke the shell using a single command line, entered at a UNIX® or MS-DOS® prompt. This command 
line consists of the shell invocation command, one or more file names, and optionally, one or more shell 
options.

3.2.1  Command Line Syntax
The syntax of the shell command line is as follows:

scc [option...] file...

The three components of the command line are:

3.2.1.1   Command Line Syntax Rules
The following syntax rules apply:

• The command line must consist of only one line.

• You can include individual options and files in the command line in any order, but you must separate 
them from each other using at least one space.

• Do not combine options. Specify the options individually.

• Options which specify an argument, such as a file name or directory name, must be followed 
immediately by their argument(s), separated by at least one space.

• All file names, options, and arguments are case sensitive. File names may be any combination of 
alphanumeric characters.

• You can not start a file name with a numeric character. Numbers can appear within the filename, but 
not at the beginning of the file name.

• The underscore (_) is the only special character that the compiler accepts.

$SCTOOLS_HOME Defines the root directory where the executables, libraries, and tools are 
stored. This is set to the default location at installation. The compiler searches 
this directory for all the configuration and executable files that it requires.

scc Formerly ccsc100. Invokes the compiler shell.

option One or more options that control the way in which the shell and the various development 
tools operate. Section 3.3, “Shell Control Options,” describes the available options and 
their effect on the shell and the specified files. It is not mandatory to specify options in the 
command line.

file The names (including extensions) of one or more files that you want the shell to process. 
These can be source, object, library, and/or command files.
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The shell command line shown in Example 3-1 specifies three C source files and the option -c, which 
instructs the shell to compile and assemble these files.

Example 3-1.   Invoking the shell

scc -c one.c two.c three.c

3.2.1.2   Command Files
You can include one or more shell command files on the command line. Command files are files that you 
can create containing any number of options and arguments, which the shell uses as if the files are part of 
the command line. Section 3.3.1.2, “Specifying a shell command file,” describes the use of shell command 
files in greater detail.

3.3   Shell Control Options
The options specified in the command line and command files control the operation of the shell, and 
control the operation of the tools used in the application development process. 

The following categories of options are provided:

• Options that control the behavior of the shell 

• Preprocessing options 

• Options that override the file extension for input files 

• Output filename and location options 

• C language options 

• Optimization pragma and code options 

• Options that control the output of listing files and messages 

• Pass-through options 

• Hardware model and configuration options 

Table 3-2 on page 3-11 provides a summary of the available options. This table is followed by detailed 
descriptions of each of the options, with the exception of the options relating to optimization, which are 
described in detail in Chapter 5, “Optimization Techniques and Hints.” 
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Table 3-2.   Shell Options Summary

 Options that control the behavior of the shell

Option Effect Section Page

-E [file] Stops after preprocessing source files. Removes comments. 3.3.1.1 3-14

-cfe Stops after Front End. Does not invoke the optimizer. Enables the 
creation of libraries of object files for use with cross-file optimization.

3.3.1.1 3-14

-S Stops after compilation. Does not invoke the assembler. 3.3.1.1 3-14

-c Compiles and assembles only. Does not invoke the linker. 3.3.1.1 3-14

-F file Reads options from the specified file, and appends to command line. 3.3.1.2 3-15

-h or none Displays the shell Help page, listing all available options. 3.3.1.3 3-15

Preprocessing Options

Option Effect Section Page

-C Preserves comments in the preprocessing output. 3.3.2.1 3-16

-M file Generates a MAKE file showing dependencies. 3.3.2.1 3-16

-MH file Generates a list of #include files. 3.3.2.1 3-16

-D mac [=def] Defines preprocessor macro. 3.3.2.2 3-17

-U macro Undefines preprocessor macro. 3.3.2.2 3-17

-I dir Adds directories to the #include file search path. 3.3.2.3 3-17

Syntax note:The options -D, -U, and -I do not require a space 
before the argument.

Options that override the file extension for input files

Option Effect Section Page

-xc file 
[file2 ...]

Treats specified file(s) as C source file(s) (.c). 3.3.3 3-18

-xobj file
[file2 ...]

Treats specified file(s) as IR language file(s) (.obj). 3.3.3 3-18

-xasm file 
[file2 ...]

Treats specified file(s) as assembler source file(s) (.asm or .sl). 3.3.3 3-18

Output filename and location options

Option Effect Section Page

-o file Assigns a filename (and extension) to the output file. 3.3.4 3-19

-r dir Redirects all output to the specified directory. 3.3.4 3-19
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C Language Options

Option Effect Section Page

-ansi Strict ANSI mode. Assumes all C source files contain ANSI/ISO 
versions of the language, with no extensions. The default mode is the 
ANSI/ISO version with extensions.

3.3.5.1 3-20

-kr K&R/pcc mode. Assumes all C source files contain K&R/pcc versions 
of the language. The default mode is the ANSI/ISO version with 
extensions.

3.3.5.1 3-20

-g Adds debug information to generated files. 3.3.5.2 3-20

-sc (Default) Makes char type variables signed. 3.3.5.3 3-20

-usc Makes char type variables unsigned. The default setting is signed. 3.3.5.3 3-20

-fractional Tells the compiler what to do about saturation. Indicates that your 
code contains intrinsics.

3.3.5.4 3-21

Optimization Pragma and Code Options

Option Effect Section Page

-O0 Disables all optimizations. Outputs unoptimized assembly code.

-O1 Performs all target-independent optimizations, and outputs optimized 
linear assembly code. 
Omits all target-specific optimizations.

5.3.2 5-9

-O2 (Default) Performs all optimizations, producing the highest performance code 
possible without cross-file optimization. Outputs optimized non-linear 
assembly code. 

5.3.3 5-20

-Os Performs space optimization for the indicated level of optimization. 
Outputs optimized assembly code which is small.

This option can be specified together with any of the optimization 
options except -O0.

5.3.4 5-33

-Og Performs cross-file optimization, which applies the indicated level of 
optimization across all input files at once. The default is non-cross file 
optimization.
This option can be specified together with any of the optimization 
options except -O0.

5.3.5 5-35

-no_overflow Tells the compiler that the application does not rely on the ANSI/ISO 
C defined overflow behavior of operations on unsigned integral 
data-types.

Pass-through Options

Option Effect Section Page

-Xasm option Passes option to the assembler. 3.3.6 3-21

-Xlnk option Passes option to the linker. 3.3.6 3-21

Options that control the output of listing files and messages

Option Effect Section Page

-de Retains a generated error file for each source file. 3.3.7.1 3-22

Table 3-2.   Shell Options Summary (Continued)
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-dm [file] Generates a link map file. 3.3.7.1 3-22

-do Adds to the assembly output file the offsets for C data structure field 
definitions.

3.3.7.1 3-22

-dL Generates a C list file for each source file. 3.3.7.1 3-22

-dL1 Generates a C list file for each source file, including a list of 
#include files.

3.3.7.1 3-22

-dL2 Generates a C list file for each source file, including expansions. 3.3.7.1 3-22

-dL3 Generates a C list file for each source file, including both #include 
files and expansions.

3.3.7.1 3-22

-dx [file] Generates a cross-reference information file. 3.3.7.1 3-22

-dc [0-4] Generates a file showing calls in graphical tree form, in postscript. 
The number 0 to 4 specifies the paper size, A0 through A4.

3.3.7.1 3-22

-q or -w (Default) Quiet mode. Displays errors only. 3.3.7.2 3-23

-v Verbose mode. Displays full information. 3.3.7.2 3-23

-n Displays command lines without executing. 3.3.7.2 3-23

-Wj Suppresses warnings on local automatic variables that are used 
before their values are set.

3.3.7.3 3-23

-Wg Suppresses cross-file optimization warnings. 3.3.7.3 3-23

-Wall Reports all warnings and remarks. 3.3.7.4 3-23

Hardware Model and Configuration Options

Option Effect Section Page

-arch target Specifies the target architecture. sc140 is the default architecture. 3.3.8.1 3-24

-mc file Specifies the file to be used as the machine configuration file, if 
different from the default file defined at installation.

3.3.8.2 3-24

-ma file Specifies the file to be used as the application configuration file, if 
different from the default file defined at installation.

3.3.8.2 3-24

-crt file Specifies the file to be used as the startup file, if different from the 
default file defined at installation.

3.3.8.2 3-24

-mb Compiles in big-memory mode. Small-memory mode is the default. 3.3.9 3-25

-mt Compiles in tiny-memory mode.Small-memory mode is the default. 3.3.9.2 3-25

-mrom Copies all initialized variables from ROM at startup. 3.3.9.3 3-25

-be Generates output for a big-endian target configuration. The default is 
a little-endian configuration.

3.3.9.4 3-25

-mem file Specifies the linker command file to be used, if different from the 
default file defined at installation.

3.3.8.2 3-24

Table 3-2.   Shell Options Summary (Continued)
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3.3.1  Controlling the Behavior of the Shell
The options described in this section enable you to control the overall actions of the shell. You can tell the 
shell program at what stage to stop processing, define files containing command line options, and display 
the invocation commands.

3.3.1.1   Controlling where the shell stops processing
By default, the shell completes the entire processing cycle, from the input of source files through all of the 
intermediate stages to the output of the final executable. If you want to stop the processing at a specific 
stage, you can use one of the options -E, -cfe, -S, or -c. In this way, you can process and check 
individual files or groups of files through different stages, until the files are finally ready to be compiled 
and linked together. 

Following is the process for controlling where the shell stops processing.

1. Select one of the following options:

2. Following processing with the -E, -cfe, -S, or -c options, the output files are written to 
the current directory. If you use the -r option the output files are written to the specified 
directory.

3. The compiler assigns the output files the same names as the input files, with the extension 
for the selected option.

4. The compiler overwrites any existing files in the directory with the same name and 
extension.

The starting point for the processing of each input file is determined by its file extension. Refer to 
Table 3-1 on page 3-7 for an explanation of file extensions. See Section 3.3.3, “Overriding Input File 
Extensions,” for a description of the options you can use to override these extensions.

Option Description

-E [file]

The shell stops after preprocessing the C source files. Include an .i extension if you 
want the file input to the compiler at a later time. If you do not specify a file, the 
compiler sends the output to the standard output stream, stdout. 
Comments are not preserved in the preprocessing output, unless you specify the 
option -C. See Section 3.3.2.1, “Changing preprocessed output,”  for details of -C and 
other options that add specific features to the preprocessing output.

-cfe

The shell stops after it processes the input source files through the Front End. You can 
use this option to check that the files are valid source files that meet the essential 
requirements for processing by the shell, for example, they contain no syntax errors. 
This is primarily useful when preparing files for cross-file optimization. Output files are 
IR files, assigned the extension .obj. 
The -cfe option enables you to create libraries of object files to use later when 
compiling in cross-file optimization mode. 

-S
The shell stops after it compiles the source files to assembly files, and does not invoke 
the assembler. Output files are assigned the extension .sl.

-c
The shell stops after compiling C and assembly source files to object code, and does 
not invoke the linker. The object code output files are assigned the extension .eln.
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3.3.1.2   Specifying a shell command file
You can create command files containing options and arguments, which the shell program will treat as if 
they were included on the command line. 

Defining options and arguments within command files can save you input time when you invoke the shell 
program. This also helps you overcome any imposed limitation on the length of the command line. Each 
time you invoke the shell, you can select the command file with the set of options that suit your specific 
requirements. 

To specify a shell command file, specify the option -F followed by a filename. A command file can itself 
contain the option -F specifying another shell command file.

Example 3-2 illustrates the use of the -F option to specify the command file proj.opt. 

Example 3-2.   Defining a shell command file

scc -F proj.opt

Within the command file, each separate option (with or without an argument), file, or list of files must 
reside on a new line. You can specify as many lines as you wish, in any order. You can include comments 
in the file using the # character. The shell ignores all characters between # and the end of the line. 

The command file shown in Example 3-3 contains four lines that instruct the shell to invoke the linker with 
three application object files and one library file, generate a link map file, and output the executable 
program to a file named appl.eld. 

Example 3-3.   Contents of a shell command file

-o appl.eld # output file name
-dm appl.map # generate map file
file1.eln file2.eln file3.eln # object files
-l mylib.elb  # shared library

Note: If you do not specify a map file, the shell generates a file with the same file name as the 
specified .eld file, and the extension .map.

3.3.1.3   Displaying the shell Help page
The shell Help page lists all of the available shell options and arguments. Select the option -h to display 
this list.

Example 3-4 shows a section of the shell Help page:

Example 3-4.   Shell Help page (extract)

-c Compile and assemble only. Don’t invoke the linker
-cfe Stop after Front-End. (Used for cross-file optimization)
-S Generate assembly output file. Don’t invoke assembler
-E Preprocess only
-C Preprocess only and keep comments
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3.3.2  Specifying Preprocessing Options
The options described in this section enable you to control the preprocessing stage of the shell program, 
before the input files proceed through the Front End. 

Using these preprocessing options, you can:

• change the output that the preprocessor produces, 

• define one or more preprocessor macros, and

• define the directories you want searched for #include files.

3.3.2.1   Changing preprocessed output
You can specify any of the following options to change the format and content of the preprocessed output. 
You can specify these options in addition to the -E option, or instead of the -E option. 

-C Keeps all comments (preprocessor directives) in the preprocessing output. If you 
specify the -E option only, the preprocessed text is written to the output file with 
line control information only, and with all comments removed.

-M [file] Instead of the normal preprocessing output, the compiler generates an output file in 
MAKE format, containing a list that shows the dependencies between the input source 
files.

If you do not specify a file, the compiler sends the output to the standard output 
stream, stdout.

-MH [file] Instead of the normal preprocessing output, the compiler generates an output file 
containing a list of all the #include files used in the source. This list includes all 
levels of #include files, together with any nested files.

If you do not specify a file, the compiler sends the output to the standard output 
stream, stdout.
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3.3.2.2   Defining and undefining preprocessor macros
You can define one or more preprocessor macros, and you can remove the definition of a macro. 
Section 3.4.6, “Predefined Macros,” provides details of all the predefined macros supplied with the SC100 
C compiler.

You can specify the following macro options more than once in the command line, to define and undefine 
different preprocessor macros: 

3.3.2.3   Adding directories to the #include file path
The option -I dir adds the specified directory or directories to the path that the shell uses to search for 
#include files. The string dir can be a list of directories. 

To specify directory or directories for the #include file search path:

1. Specify the option -I. 

2. Follow the -I option with a directory name or a list of directories. 

3. The space between the -I option and the dir string is optional. 

4. On UNIX hosts, separate the individual directories in the list with colons (:). 

5. On PC hosts, separate the individual directories with semicolons (;). 

You can use this option more than once in a command line, and the directories or lists will be searched in 
the order in which the options are supplied. 

-D macro [=value] Defines the named macro as a preprocessor macro, with the specified value. 
If value is omitted, the value 1 (one) is assumed. Once a preprocessor 
macro is defined with this option, it is passed by the shell to the 
preprocessor for all subsequent compilations until it is undefined with the 
-U option.

The space between the -D option and the named macro is optional.

-U macro Undefines the named macro by removing its previous definition. The macro 
will not be passed to the preprocessor unless it is redefined with the 
-D option. Any -U options in the command line are processed only after 
all -D options have been processed.

It is not necessary to enter a space between the -U option and the named 
macro.
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3.3.3  Overriding Input File Extensions
You can change how the shell program treats a specific input file, by overriding the assumptions made by 
the shell based on the file’s extension. 

You can select any of the following options, as many times as required. After the selected option you can 
specify one or more filenames, separated by spaces.

For a list of the default extensions for each file type, see Table 3-1 on page 3-7.

These options can appear any number of times in the command line. Each option relates to one specified 
file or a list of files. The files that these options identify are processed normally in all other respects, and in 
the same relative order as other listed files.

In the following example, the input files file1.ext and file2.bar, specified after the option -xc, 
will be compiled as if they were C source files:

Example 3-5.   Overriding file extensions

scc -c -xc file1.ext file2.bar

-xc file [file2 ...] This option identifies the specified files as C language source files, as if 
they had the extension .c. The shell processes these files in exactly the 
same way as any other C source files specified in the command line, subject 
to any other processing options selected.

-xobj file [file2 ...] This option identifies the files as IR language files, as if they were output by 
the Front End with the extension .obj. The compiler inputs the files for 
processing.

-xasm file [file2 ...] This option instructs the shell program to identify the specified files as 
assembler source files, as if they had the extension .asm or .sl. The files 
are assembled at the appropriate processing stage, and the object code is 
made available to the linker. 
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3.3.4  Output Filename and Location Options
Output filename and location options allow you to specify the name and/or directory for the output files 
that the shell program produces. By default, the compiler assigns each output file the same name as the 
input file and is stored in the current directory.

The stage at which the shell stops processing determines the default file type and extension for the output 
files. For example, when you select the -cfe option, the output files that the Front End produces have the 
extension .obj. If you wish, you can specify a different extension when you specify the file name. This 
alters the way the shell treats this file. For more information about overriding file extensions, refer to 
Section 3.3.3, “Overriding Input File Extensions.” 

You can select either or both of the following options.

In Example 3-6, the input file file1.foo will be treated as an input file to the linker (the default).

Example 3-6.   Specifying output files

scc -o file.eld file1.foo

-o file The output file is assigned the specified filename, and optionally the specified 
extension. Any existing file with the same name in the current directory, or in the 
specified directory, if the -r option is selected, is overwritten. You can specify this 
option more than once in the command line, for different files.

-r dir All output files are redirected to the specified directory. This option can be 
specified only once in the command line.
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3.3.5  Specifying C Language Options
You can use the C language options described in this section to:

• inform the shell of the language version used in the source files, 

• add debugging information to generated files, and 

• to define whether variables of type char default to signed or unsigned.

3.3.5.1   Defining the language version 
The default C language mode is the normal ANSI/ISO version with extensions, with all source files using 
the standard .c extension. You do not need to specify any language option if you use this mode. However, 
if you use a different language version, you must select either the -ansi or the -kr option.

See Section 3.4, “Language Features,” for details of the C language features supported in the default, strict 
ANSI and K&R modes.

You cannot compile source files in different C language versions simultaneously. If you need to compile 
source files in different versions, you must use a separate shell command line for each version.

3.3.5.2   Adding debugging information to files
The option -g tells the shell program to include debugging information in the output files produced by all 
C compilations. The produced object files are somewhat larger as they will contain source-level debugging 
information.

The -O0 option disables optimization. When you debug, we recommend combining the -g option and the 
-O0 option, so that optimization is disabled while you debug. You can not use any other optimization level 
with the -g option. If you specify an optimization level other than -O0 in combination with -g, the 
compiler issues the following warning message: “Illegal combination of options: -g cannot 
be used with any code optimization.” The SCC shell exits after displaying this message.

3.3.5.3   Changing the default char sign setting
Signed is the default setting for all char type variables. 

• To make all char type variables default to unsigned use the -usc option. 

• To change the setting back to make all char type variables default to signed, specify the -sc option.

Language Version Option to Select Assumptions

Strict ANSI/ISO version of C -ansi option Front End assumes that all input source files 
are to be in the strict ANSI/ISO version of C 
with no extensions. The compiler flags any 

extensions that it finds with warnings.

K&R (Portable C Compiler, or 
PCC) dialect of C

-kr option Shell program assumes that all source files are 
in this version of C.
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3.3.5.4   Indicating fractional data-types in saturation
The -fractional option tells the compiler that the application you are compiling operates on fractional 
data-types with the expected ITU saturation behavior. This is not the compilation default. You must 
specify this switch to use the ITU fractional intrinsics. -fractional implies that your code contains 
intrinsics.

You must intricately know your code when using the -fractional option. To obtain correct results, type 
-fractional if your code contains intrinsics. If your code contains intrinsics and you do not type 
-fractional, you will receive erroneous results.

3.3.6  Passing Options Through to Specific Tools
The options described in this section enable you to instruct the shell program to pass options to specific 
tools, such as the assembler or linker, as shown in Example 3-7.

Example 3-7.   Passing multiple options to the same tool

scc -Xasm -occ 

You can instruct the compiler to pass multiple options to the same tool in the same option statement, along 
with the arguments for each option. You must list multiple options and their arguments, where relevant, 
within quotation marks.

When invoking a tool several times, the compiler passes the pass-through options on each invocation. It 
then continues to pass any other options that the shell program passes directly to the tool from the 
command line.

Specify either of the following options: 

Note: Use the -mem option to pass a command file other than the default to the linker. If you use the -Xlnk 
option to do this, both the command file you are specifying and the default command file are passed 
to the linker, resulting in errors.

-Xasm option Passes the specified option(s) and arguments to the assembler.

-Xlnk option Passes the specified option(s) and arguments to the linker.
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3.3.7  Setting the Options for Listings and Messages
The options in this section enable you to control the retention, display, and printing of diagnostic and 
informational messages, and the generation of various listing and map files.

3.3.7.1   Generating listing files
By default the shell program does not retain the diagnostic and cross-reference information produced at 
different processing stages. You can select to retain one or more different types of information in listing 
files.

Use any combination of the following options to generate listing files that contain the types of information 
you require. You can specify each individual option only once in a shell command line. 

-de The Front End creates a file containing all error messages generated during the 
compilation. The -de option retains this error file. If you do not specify this option, the 
errors display during processing, but are not kept. The compiler creates an error file for 
each source file, with the same name as the source file and the extension .err.

-dm [file] Generates a link map file listing all the specific variables, applications and addresses 
that the linker uses. If you do not specify a file name, the compiler creates a file with the 
same name as the executable, and the extension .map.

-do Includes the details of C data structures in the output assembly file, showing the offsets 
for all field definitions in each data structure. Refer to Chapter 4, “Interfacing C and 
Assembly Code,” for a detailed description of the C/assembler interface.

-dL Generates a C list file for each source file, listing the entire contents of the source file. 
The compiler creates each list file with the same name as its corresponding source file, 
and the extension .lis.

-dL1 Generates a C list file for each source file, listing the entire contents of the source file, 
with the addition of a list of #include files that the source uses. The compiler creates 
each list file with the same name as its corresponding source file, and the 
extension .lis.

-dL2 Generates a C list file for each source file, listing the entire contents of the source file, 
with the addition of expansions, such as macro expansions, line splices, and trigraphs. 
The compiler creates each list file with the same name as its corresponding source file, 
and the extension .lis.

-dL3 Generates a C list file for each source file, listing the entire contents of the source file, 
with the addition of a list of #include files, and expansions, such as macro expansions, 
line splices, and trigraphs. The compiler creates each list file with the same name as its 
corresponding source file, and the extension .lis.

-dx [file] Generates a cross-reference information file, providing details of cross-references in the 
source file. If you do not specify a file name, the compiler creates a file with the same 
name as the source file, and the extension .xrf.

-dc [0-4] Generates a file showing calls in graphical tree form, which you can print using a 
postscript printer. Specify the size of the paper to use for the printout: 0 for paper size 
A0, 1 for A1, and so on.
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3.3.7.2   Controlling the type of information displayed
You can control the level and type of messages and information that the shell program displays using the 
following options:

3.3.7.3   Suppressing warnings
By default the shell reports all errors and warnings. You can suppress specific types of warnings using the 
-Wj and -Wg options, which reduce the number of messages that the shell program generates. This is 
useful if, for example, you are testing incomplete sections of the program and you know in advance that 
certain warnings will be produced. 

You can select either or both of the following options:

3.3.7.4   Reporting all remarks and warnings
By default, the shell reports all errors and warnings, but does not report remarks unless you specifically 
instruct it to do so. Select the option -Wall to ensure that all remarks are reported, as well as all warnings 
and errors.

-q or -w Quiet mode (the default). The shell program displays the minimum amount of information 
(errors only), omitting normal notices and banners. This option is useful when running the 
shell in batch mode or with the MAKE utility, when the display of normal progress 
information is not required.

-v Verbose mode. The shell program displays/prints all the commands and command line 
options used, as it proceeds through the different processing stages and invokes the 
individual tools. The exact information output depends on the processing stages that the 
shell performs.

-n Displays the specified shell processing actions without executing them. You can use this 
option before you invoke the shell and to check the actions the shell will take, based on the 
list of files and arguments specified in the command line.

-Wj This option suppresses warnings on local automatic variables that are used before their 
values are set. If you are testing partial code, which you know does not assign values to all 
the local automatic variables, you can use this option to suppress all the "false" warnings 
that would otherwise be issued.

-Wg By default, the compiler produces a warning for each module identified as missing during 
the cross-file optimization process. Use this option if you wish to suppress these warnings, 
for example when testing an incomplete application, or one that uses external modules.
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3.3.8  Specifying the Hardware Model and Configuration
The options in this category let you override various default hardware and configuration settings. 

3.3.8.1   Defining the architecture
The default architecture is SC140, which utilizes four MAC units. Unless instructed otherwise, the 
compiler assumes, during the optimization phase, that four execution units are in use, and parallelizes the 
code accordingly.

If you are compiling for a hardware configuration other than SC140, it is essential that you specify the 
correct architecture. To change the assumed architecture, specify the -arch target option, as illustrated 
in Example 3-8.

Valid values for target are sc110 and sc140 (default).

Example 3-8.   Defining the architecture

scc -arch sc110 file1.c

3.3.8.2   Configuration and Startup files
The default machine and application configuration files that the compiler uses, and the startup file that the 
linker uses, are defined during the installation process. The following table provides brief descriptions of 
the systems configuration and startup files. These files, and their use in the run-time environment, are 
described in greater detail in Chapter 6, “Runtime Environment.” 

3.3.8.2.1   Defining specific configuration and startup files

You may wish to select other files to be used for configuration setup and initialization instead of the 
default files, for example, to specify certain devices that need initializing at startup.

To specify different files for use at initialization, select one or all of the following options. For each option, 
specify the file name, and if the file is not in the current directory, specify the path.

File Description

Machine configuration file includes information about logical and physical memory maps. This information 
enables the global optimizer to dispatch variables to different memory areas in 
internal ROM or RAM.

Application configuration file contains information about how the application software and the hardware 
interact. The file includes sections about binding interrupt handlers, overlays, and 
application objects to specific addresses.

Startup file the linker uses the startup files when it links the assembly code files with the 
standard libraries, and defines such items as the interrupt vector and set up code 
executed upon system initialization.

-mc file The compiler reads the specified file instead of the default machine configuration 
file. 

-ma file The compiler reads the specified file instead of the default application 
configuration file. 
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For more detailed information, refer to Chapter 6, “Runtime Environment.” 

3.3.9  Specifying modes
The SC100 architecture instruction set supports 15-bit, 16-bit, and 32-bit addresses. If the application is 
small enough to allow all static data to fit into the lower 64K of the address space, then the compiler 
generates more efficient code. 

Small memory mode is the default, and assumes that all addresses are 16-bit. The compiler uses small 
memory mode unless you specify big memory mode or tiny memory mode.

3.3.9.1   Specifying big memory mode
If your application does not fit into 64K bytes, meaning that the use of 32-bit absolute addresses is 
required, you must instruct the shell to use the big memory model, by specifying the -mb option. 

3.3.9.2   Specifying tiny memory mode
If your application can fit in less than 32K bytes, use the tiny memory mode, which is the most efficient for 
code size and performance. Instruct the shell to use the tiny memory model, by specifying the -mt option. 
The .data section is loaded into the lowest address in memory and references to the .data section use code 
sequences with smaller encodings. 

3.3.9.3   Copying initialized variables from ROM
During development you would normally use a loader to set the values for global variables, and to load 
these initialized variables into RAM at startup, together with the executable application. 

When you finish development, if your final application does not use a loader, you must ensure that when 
the completed application executes, the initialized variables are copied from ROM into RAM. To do this, 
when you compile the final application version, specify the -mrom option.

Refer to Chapter 6, “Runtime Environment,” for more detailed information about the initialization of 
variables in the runtime environment.

3.3.9.4   Specifying big-endian mode
By default, the compiler generates code based on the assumption that the architecture operates in 
little-endian mode, meaning the least significant bits in the lower address. If you want to run the 
application in an environment that operates in big-endian mode, meaning the most significant bits in the 
lower address, specify the option -be.

-crt file The linker links into the application of the specified file instead of the default 
startup file.

-mem file The linker uses the specified command file instead of the default linker command 
file (crtscsmm.cmd or crtscbmm.cmd).
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3.4   Language Features
This section describes the different language modes that the SC100 C compiler accepts. It also provides 
detailed information about the data types and sizes supported, fractional arithmetic representation, intrinsic 
functions, pragmas, and predefined macros.

3.4.1  C Language Dialects
The compiler accepts three variations of the C language.:

You can not compile source files of different C language types together; however, once compiled you can 
link them together into a single application.

3.4.1.1   Standard Extensions
This section lists the extensions that standard C programs normally accept. When compiling in strict 
ANSI/ISO mode, the compiler issues warnings when it detects these extensions.

3.4.1.1.1   Preprocessor extensions

The compiler accepts the following preprocessor extensions:

• Comment text can appear at the end of preprocessing directives.

• The compiler scans numbers according to the syntax for numbers. Thus, 0x123e+1 is scanned as 
three tokens instead of one invalid token.

• The compiler allows the #assert preprocessing extensions of AT&T System V release 4. These 
enable the definition and testing of predicate names. Such names are in a name space distinct from 
all other names, including macro names. You can define a predicate name using a preprocessing 
directive in one of two forms, as shown in Example 3-9:

Example 3-9.   Defining a predicate name

#assert name
#assert name(token-sequence)

In the first form, the predicate is not given a value. In the second form, it is given the value 
token-sequence. Such a predicate can be tested in a #if expression, as follows: 
#name(token-sequence). This expression has the value 1 if a #assert of that name with that 
token-sequence has appeared, otherwise it has the value 0. You can assign a predicate more than one 
value at a given time.

• Normal ANSI/ISO version with 
extensions

This is the default mode. See Section 3.4.1.1, “Standard 
Extensions.” for more details.

• Strict ANSI/ISO mode: Specified with the shell option -ansi. Any ISO C extensions are 
flagged with warnings.

• K&R/PCC mode: Specified with the shell option -kr. The compiler accepts the older 
K&R dialect of C, and provides almost complete compatibility with 
the widely used UNIX PCC (pcc) dialect. See Section 3.4.1.2, 
“K&R/PCC mode,” for details. 
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• A predicate may be deleted by a preprocessing directive in one of two forms, as shown in 
Example 3-10:

Example 3-10.   Deleting a predicate

#unassert name
#unassert name(token-sequence)

The first form removes all definitions of the indicated predicate name. The second form removes 
only the indicated definition, leaving any remaining definitions unchanged.

A number of predefined preprocessor macros are provided, as described in Section 3.4.6, “Predefined 
Macros.” 

The pragmas described in Section 3.4.5, “Pragmas,”  are available in all modes.

3.4.1.1.2   Syntax

The compiler accepts:

• An empty translation unit (input file), containing no declarations.

• An extra comma at the end of an enum list. Similarly, you can omit the final semicolon preceding 
the closing } of a struct or union specifier. The compiler issues a remark in both cases, except in pcc 
mode.

• A label definition followed immediately by a right brace. (Normally, a label definition must be 
followed by a statement.) The compiler issues a warning.

• An empty declaration (a semicolon with nothing before it). The compiler issues a remark.

• An initializer expression that is a single value and used to initialize an entire static array, struct, 
or union not enclosed in braces, except in strict ANSI C mode.

• By default, the compiler accepts a struct with no named fields, but that has at least one unnamed 
field. The compiler issues a diagnostic warning or error in strict ANSI C mode.

3.4.1.1.3   Declarations

The compiler accepts the following declaration extensions:

• Static functions declared in function and block scopes. The compiler moves their declarations to the 
file scope.

• The compiler allows benign redeclarations of typedef names, meaning that you can re declare a 
typedef name in the same scope as the same type. The compiler issues a warning.

• The compiler always accepts asm statements and declarations, with one exception, which is when 
compiling in strict ANSI C mode. The reason for this is that there is a conflict with the ANSI C 
standard. For example, the Front End interprets asm("xyz"); as an asm statement by default, 
while ANSI C interprets this as a call of an implicitly-defined function asm.

• The compiler accepts functions declared as asm functions, and recognizes__asm as a synonym for 
asm. An asm function body is represented by an uninterpreted null-terminated string containing the 
text that appears in the source. 
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• An asm function must be declared with no storage class, with a prototyped parameter list, and with 
no omitted parameters, as shown in Example 3-11: 

Example 3-11.   Declaring an asm function

asm void f(int,int) {
  ...
} 

• As an asm function must be output with a prototyped parameter list, these functions are valid for 
ANSI C modes only.

3.4.1.1.4   Types Extensions

The compiler accepts:

• Bit-fields with base types that are enums or integer types, as well as the types int and unsigned 
int. The use of any signed integer type is equivalent to using type int, and the use of any unsigned 
integer type is equivalent to using type unsigned int.

• The last member of a struct containing an incomplete array type. It may not be the only member 
of the struct (otherwise, the struct would have zero size). 

• A file-scope array with an incomplete struct, union, or enum type as its element type. The type 
must be completed before the array is subscripted (if it is subscripted), and by the end of the 
compilation if the array is not extern. 

• Incomplete enum tags. You can define and resolve the tag name later by specifying the 
brace-enclosed list.

• Object pointer types and function parameter arrays that decay to pointers may use restrict as a 
type qualifier. Its presence is recorded in the compiler so that optimizations are performed that would 
otherwise be prevented because of possible aliasing. 

• The type long float as a synonym for double.

• Assignment of pointer types in cases where the destination type has added type qualifiers that are 
not at the top level (for example, int ** to const int **). 

3.4.1.1.5   Expressions and statements

The compiler accepts the following extensions for expressions and statements:

• The compiler allows assignment and pointer differences between pointers to types that are 
interchangeable, but not identical, for example, unsigned char * and char *. This includes 
pointers to same-sized integral types (e.g., typically, int * and long *). The compiler issues a 
warning, except in pcc mode. Without a warning, the compiler may assign a string constant to a 
pointer to any kind of character, without a warning.

• In operations on pointers, a pointer to void is always implicitly converted to another type if 
necessary, and a null pointer constant is always implicitly converted to a null pointer of the right type 
if necessary. In ANSI C, some operators allow such conversions, while others do not, generally 
where such a conversion would not be logical.

• In an initializer, a pointer constant value may be cast to an integral type if the integral type is big 
enough to contain it.
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• In an integral constant expression, an integer constant may be cast to a pointer type and then back to 
an integral type.

• In character and string escapes, if the character following the \ has no special meaning, the value 
of the escape is the character itself. Thus “\s” == “s”. A warning is issued.

• Adjacent wide and non-wide string literals are not concatenated. 

• In duplicate size and sign specifiers (e.g., short short or unsigned unsigned) the redundancy 
is ignored, and a warning is issued.

• __ALIGNOF__ is similar to sizeof, but returns the alignment requirement value for a type, or 1 if 
there is no alignment requirement. It may be followed by a type or expression in parentheses, as 
shown in Example 3-12: 

Example 3-12.   Returning the alignment requirement

__ALIGNOF__(type)
__ALIGNOF__(expression)

The expression in the second form is not evaluated.

• Identifiers may not contain dollar signs.

• __INTADDR__(expression) scans the enclosed expression as a constant expression, and converts 
it to an integer constant (it is used in the offsetof macro).

• The values of enumeration constants may be given by expressions that evaluate to unsigned 
quantities which fit in the unsigned int range but not in the int range. A warning is issued when 
such a result is possible, as shown in Example 3-13:

Example 3-13.   Out of range warning

/* When ints are 32 bits: */
enum a {w = -2147483648};  /* No warning */
enum b {x = 0x80000000};   /* No warning */
enum c {y = 0x80000001};   /* No warning */
enum d {z = 2147483649};   /* Warning */ 

• The address of a variable with register storage class may be taken, and a warning is issued.

• The expression &... is accepted in the body of a function in which an ellipsis appears in the 
parameter list.

• An ellipsis may appear by itself in the parameter list of a function declaration, for example, f(...). 
A diagnostic is issued in strict ANSI mode.
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• External entities declared in other scopes are visible, as shown in Example 3-14. A warning is issued.

Example 3-14.   External entities in other scopes

void f1(void) { extern void f(); }
void f2() { f(); /* Using out of scope declaration */ } 

• Pointers to incomplete arrays may be used in pointer addition, subtraction, and subscripting, as 
shown below in Example 3-15. A warning is issued if the value added or subtracted is anything other 
than a constant zero. Since the type pointed to by the pointer has zero size, the value added to or 
subtracted from the pointer is multiplied by zero and therefore has no effect on the result. 
Comparisons and pointer differences of such pairs of pointer types are also allowed. A warning is 
issued.

Example 3-15.   Pointers to incomplete arrays

int (*p)[];
...
q = p[0]; 

• Pointers to different function types may be assigned or compared for equality (==) or inequality (!=) 
without an explicit type cast, and a warning is issued. 

• A pointer to void may be implicitly converted to or from a pointer to a function type.

• Intrinsic functions are recognized as extensions only in the default C language mode (ANSI C with 
extensions). In all other modes they are treated as function calls.
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3.4.1.2   K&R/PCC mode
When you specify pcc mode, the SC100 C compiler accepts the traditional C language that the The C 
Programming Language, first edition, by Kernighan and Ritchie (K&R), Prentice-Hall, 1978 defined. This 
mode provides almost complete compatibility with the Reiser CPP and Johnson PCC (pcc), both widely 
used as part of UNIX systems. Since there is no documentation of the exact behavior of those programs, 
complete compatibility cannot be guaranteed.

In general, when compiling in pcc mode, the compiler attempts to interpret a source program that is valid 
to pcc in the same way that pcc would. However, ANSI features that do not conflict with this behavior are 
not disabled.

In some cases where pcc allows a highly questionable construct, the compiler accepts it but gives a 
warning, where pcc would be silent. For example: 0x, a degenerate hexadecimal number, is accepted as 
zero, but a warning is issued.

3.4.1.2.1   K&R/PCC mode preprocessor differences

The following are the preprocessor differences relative to the default standard mode: 

• When preprocessing output is generated, the line-identifying directives have the pcc form instead 
of the ANSI form.

• __STDC__ is left undefined.

• In preprocessing output, the compiler deletes entire comments instead of replacing them with one 
space. Extra spaces are not generated in textual preprocessing output to prevent pasting of adjacent 
confusable tokens. As a result, the characters a/**/b are ab in preprocessor output.

• The first directory searched for include files is the directory containing the file that contains the 
#include instead of the directory containing the primary source file.

• The compiler does not recognize Trigraphs.

• Macro expansion is implemented differently. Arguments to macros are not macro- expanded before 
being inserted into the expansion of the macro. Any macro invocations in the argument text are 
expanded when the macro expansion is rescanned. With this method, macro recursion is possible and 
is checked for.

• Token pasting inside macro expansions is implemented differently. End-of-token markers are not 
maintained, so tokens that abut after macro substitution may be parsed as a single token.

• The compiler recognizes macro parameter names inside character and string constants and gives 
them substitutes.

• The compiler flags macro invocations having too many arguments with a warning rather than an 
error. The compiler ignores the extra arguments.

• The compiler flags macro invocations having too few arguments with a warning rather than an error. 
A null string is used as the value of the missing parameters.

• The compiler ignores extra occurrences of #else, after the first has appeared in an #if block; and 
instead issues a warning.
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3.4.1.2.2   K&R/PCC mode syntax differences

The following are the syntax differences relative to the default standard mode: 

• The keywords signed, const, and volatile are disabled, so that they can be user identifiers. The 
other non-K&R keywords (enum and void) are judged to have existed already in code and are not 
disabled.

• The = preceding an initializer may be omitted. A warning is issued. This was an anachronism even 
in K&R.

• 0x is accepted as a hexadecimal 0, with a warning.

• 1E+ is accepted as a floating point constant with an exponent of 0, with a warning.

• The compound assignment operators may be written as two tokens (for example, += may be 
written + =).

• The compound assignment operators may be written in their old-fashioned reversed forms (for 
example, -= may be written =-). A warning is issued. 

• The digits 8 and 9 are allowed in octal constants. (For example, the constant 099 has the 
value 9*8+9, or 81.)

• The escape \a (alert) is not recognized in character and string constants.

3.4.1.2.3   K&R/PCC mode differences for declarations

The following are the declaration differences relative to the default ANSI mode: 

• Declarations of the form typedef some-type void; are ignored.

• The names of functions and of external variables are always entered at the file scope.

• A function declared static, which is used and never defined, is treated as if its storage class were 
extern (instead of causing an error for being undefined).

• A file-scope array that has an unspecified storage class and remains incomplete at the end of the 
compilation will be treated as if its storage class is extern. In ANSI mode, the number of elements 
is changed to 1, and the storage class remains unspecified.

• When a function parameter list begins with a typedef identifier, the parameter list is considered 
prototyped only if the typedef identifier is followed by something other than a comma or right 
parenthesis, as shown below in Example 3-16. Function parameters are allowed to have the same 
names as typedef identifiers. In the normal ANSI mode, any parameter list that begins with a 
typedef identifier is considered prototyped, and Example 3-16 would produce an error.

Example 3-16.   Prototyped parameter list

typedef int t;
int f(t) {} /* Old-style list */
int g(t x) {} /* Prototyped list, parameter x of type t */ 

• The empty declaration struct x; will not hide an outer-scope declaration of the same tag. It is 
taken to refer to the outer declaration.
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• In a declaration of a member of a struct or union, the declarator list may be omitted entirely, to 
specify an unnamed field which requires padding, as shown in Example 3-17. Such a field may not 
be a bit-field.

Example 3-17.   Omitting the declarator list

struct s {char a; int; char b[2];} v; /* sizeof(v) is 3 */ 

• No warning is generated for a storage specifier appearing in other than the first position in a list of 
specifiers (as in int static).

• Free-standing tag declarations are allowed in the parameter declaration list for a function with 
old-style parameters.

• Declaration specifiers are allowed to be completely omitted in declarations. (ANSI C allows this 
only for function declarations.) Thus i; declares i as an int variable. A warning is issued.

• An identifier in a function is allowed to have the same name as a parameter of the function. A 
warning is issued.

3.4.1.2.4   K&R/PCC mode type differences

The following are the type differences relative to the default standard mode: 

• Integral types with the same representation (size, signedness, and alignment) will be considered 
identical and may be used interchangeably. For example, this means that int and long will be 
interchangeable if they have the same size.

• All enums are given type int. In ANSI mode, smaller integral types will be used if possible.

• A “plain” char is considered to be the same as either signed char or unsigned char, depending 
on the command-line options. In ANSI C, “plain” char is a third type distinct from both signed 
char and unsigned char.

• All float functions are promoted to double functions, and any float function parameters are 
promoted to double function parameters.

• All float operations are executed as double.

• The types of large integer constants are determined according to the K&R rules. They will not be 
unsigned in some cases where ANSI C would define them that way. 
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3.4.1.2.5   K&R/PCC mode differences: expressions and statements

The following are the differences for expressions and statements relative to the default standard mode:

• Assignment is allowed between pointers and integers, and between incompatible pointer types, 
without an explicit cast. A warning is issued.

• A field selection of the form p->field is allowed even if p does not point to a struct or union 
that contains field. In this context, p must be a pointer or an integer. Similarly, x.field is 
allowed even if x is not a struct or union that contains field. In this case, x must be an lvalue. 
In both cases, if field is declared as a field in more than one struct or union, it must have 
the same offset in all instances.

• Overflows detected while folding signed integer operations on constants will cause warnings rather 
than errors. 

• A warning will be issued for an & operator applied to an array. The type of such an operation is 
“address of array element” rather than “address of array”.

• For the shift operators << and >>, the usual arithmetic conversions are done on the operands as they 
would be for other binary operators. The right operand is then converted to int, and the result type 
is the type of the left operand. In ANSI C, the integral promotions are done on the two operands 
separately, and the result type is the type of the left operand. The effect of this difference is that, in 
pcc mode, a long shift count will force the shift to be done as long.

• String literals will not be shared. Identical string literals will cause multiple copies of the string to 
be allocated.

• The expression sizeof may be applied to bit-fields. The size is that of the underlying type (for 
example unsigned int).

• Any lvalues cast to a type of the same size remain lvalues, except when they involve a floating 
point conversion.

• A warning rather than an error is issued for integer constants that are larger than can be 
accommodated in an unsigned long. The value is truncated to an acceptable number of low-order 
bits.

• Expressions in a switch statement are cast to int. This differs from the ANSI C definition in that 
a long expression may be truncated.

• The promotion rules for integers are different: unsigned char and unsigned short are 
promoted to unsigned int.
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3.4.1.2.6   K&R/PCC differences: remaining incompatibilities

The additional known cases where the compiler is not compatible with pcc are as follows:

• Token pasting is not implemented outside of macro expansions (meaning, in the primary source line) 
when two tokens are separated only by a comment. That is, a/**/b is not considered to be ab. The 
pcc compiler’s behavior in such a case can be obtained by preprocessing to a text file and then 
compiling that file.

The textual output from preprocessing is also equivalent but not identical. The blank lines and white 
space will not be exactly the same as those produced in pcc.

• The pcc compiler considers the result of a ?: operator to be an lvalue if the first operand is 
constant and the second and third operands are compatible lvalues. The compiler never treats the 
result of the ?: operator as an lvalue.

• The pcc compiler misparses the third operand of a ?: operator in a way that some programs exploit, 
as follows:

i ? j : k += l is parsed by pcc as i ? j : (k += l)

This is not correct, since the precedence of the += operator is lower than the precedence of the ?: 
operator. The compiler will generate an error in such a case.

• The lint utility recognizes the keywords for its special comments anywhere in a comment, 
regardless of whether they are preceded by other text in the comment. The compiler only recognizes 
the keywords when they are the first identifier following an optional initial series of blanks and/or 
horizontal tabs. In addition, lint recognizes only a single digit of the VARARGS count. The compiler 
accumulates as many digits as appear in the count.
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3.4.2  Types and Sizes
The data types that the compiler supports are summarized in Table 3-3 below. The table shows the size for 
each data type in memory and in the two register types, the 40-bit data register (Dn), and the 32-bit address 
register (Rn). Table 3-3 also shows the required alignment and the value range for each data type, together 
with a reference to the section in this chapter which provides greater detail about the data type.

Table 3-3.   Data Types and Sizes

Size (in bits) Range Details

Type Memory Dn Rn Align Minimum Maximum Section Page

char 8 40 32 8 -128 127 3.4.2.1 3-37

unsigned char 8 40 32 8 0 255 3.4.2.1 3-37

short 16 40 32 16 -32,768 32,767 3.4.2.2 3-38

unsigned short 16 40 32 16 0 65,535 3.4.2.2 3-38

int 32 40 32 32 -2,147,483,648 2,147,483,647 3.4.2.2 3-38

unsigned int 32 40 32 32 0 4,294,967,295 3.4.2.2 3-38

long 32 40 32 32 -2,147,483,648 2,147,483,647 3.4.2.2 3-38

unsigned long 32 40 32 32 0 4,294,967,295 3.4.2.2 3-38

float, double, 
and long double

32 40 32 32 -1.17E-38 1.17E+38 3.4.2.3 3-39

fractional short1

1. Fractional short is not a language type. It can be used with intrinsic functions only, and maps to the
predefined type short.

16 40 - 16 -1 0.99969842 3.4.2.4 3-40

fractional long / 
int2

2. Fractional long/int is not a language type. It can be used with intrinsic functions only, and maps to the
predefined type long/int.

32 40 - 32 -1 0.9999999953 3.4.2.4 3-40

pointer 32 40 32 32 0 0xFFFFFFFF 3.4.2.5 3-40
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3.4.2.1   Characters
A character, whether signed or unsigned, is stored in memory in one byte (8 bits), and is always aligned on 
an 8-bit boundary. Arrays of characters occupy one byte per character. Figure 3-5 shows the memory 
layout for characters.

When loaded into registers, signed characters are signed extended, while unsigned characters are zero 
extended. Figure 3-6 illustrates the layout for signed and unsigned characters in the Dn (40-bit) data 
register. “S” indicates the signed extension of the value. 

Figure 3-7 shows the layout for signed and unsigned characters in the Rn (32-bit) address register.  

Bytes * * * *

char 1 char 2 char 3 char 4

Figure 3-5.   Characters—Memory Layout

Bytes * * * * *

char (signed) S S S char

Bytes * * * * *

char (unsigned) 0 0 0 char

Figure 3-6.   Characters—Dn Register Layout

Bytes * * * *

char (signed) S S char

Bytes * * * *

char (unsigned) 0 0 char

Figure 3-7.   Characters—Rn Register Layout
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3.4.2.2   Integers
Integer arithmetic is performed using data sizes appropriate to the arithmetic operation. Short integers use 
at least 16-bit wide operations (single-precision integer arithmetic), and long integers use at least 32-bit 
(double-precision integer arithmetic).

Short and long integers are stored in memory using little-endian representation (the least significant bits in 
the lower address), unless the option -be is specified.

Integer arithmetic overflow wraps around and does not result in any additional side effects.

Figure 3-8 shows the memory layout for short and long integers.

Short integers must be aligned on 2-byte (16-bit) boundaries, while long integers must be aligned on a 
4-byte (32-bit) boundary. Figure 3-9 illustrates the alignment of short and long integers, in conjunction 
with characters.

As with characters, when loaded into registers, signed integers are signed extended, while unsigned 
integers are zero extended. 

Bytes * * * *

short 1 short 2

Bytes * * * *

long 1

Figure 3-8.   Integers—Memory Layout

Bytes * * * *

char 1 short 1

long 1

short 2 char 2

long 2

Figure 3-9.   Integers—Alignment
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Figure 3-10 illustrates the layout for signed and unsigned short and long integers in the Dn (40-bit) data 
register. “S” indicates the signed extension of the value. 

Figure 3-11 shows the layout for signed and unsigned short and long integers in the Rn (32-bit) address 
register.  

3.4.2.3   Floating point
Floating point, double, and long double type integers are mapped to a single precision IEEE-754 type, 
using 32 bits (4 bytes). The compiler generates calls for library functions to evaluate floating point 
expressions. The representation of these integers in memory and in the registers is exactly the same as for 
long integers.

Bytes * * * * *

short (signed) S S short

Bytes * * * * *

short (unsigned) 0 0 short

Bytes * * * * *

long / int (signed) S long / int

Bytes * * * * *

long / int (unsigned) 0 long / int

Figure 3-10.   Integers—Dn Register Layout

Bytes * * * *

short (signed) S short

Bytes * * * *

short (unsigned) 0 short

Bytes * * * *

long / int (signed) long / int

Bytes * * * *

long / int (unsigned) long / int

Figure 3-11.   Integers—Rn Register Layout
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3.4.2.4   Fractional representation
Since C does not provide built-in support for fractional types, the syntactic representation of fractional 
types and operations is implemented by intrinsic functions using integer data types. See Section 3.4.4, 
“Intrinsic Functions,” for details of the intrinsic functions supported.

Fixed -point arithmetic is performed using 16-bit, 32-bit, 40-bit, and 64-bit operations. Fractional integers 
are stored in memory using little-endian representation, meaning the least significant bits in the lower 
address, unless the option -be is specified.

Fractional type overflows may saturate and do not result in any additional side effect. Rounding and 
saturation modes are determined as part of the startup code, or with optional intrinsic function calls.

Operations on double and extended precision type objects are limited to assignments and fractional 
arithmetic using intrinsic functions only. See Section 3.4.3, “Fractional and Integer Arithmetic,” for further 
information. Integer operations on extended precision types are not supported. 

Fractional types are mapped to their corresponding predefined types. A fractional short maps to the 
predefined type short, a fractional long maps to the predefined type long, and a fractional int maps to 
the predefined type int.

Figure 3-12 illustrates the layout for fractional short and long integers in the Dn (40-bit) data register, 
which is the only register used for fractional integer types. “S” indicates the signed extension of the value. 

When loading data from memory into data registers, the compiler aligns the data in the registers according 
to the context in which the data is used.

3.4.2.5   Pointers
Pointers contain addresses of data objects or functions. Pointers are represented in memory using 32 bits 
(4 bytes). In the small memory model, although pointers are represented in memory using 32 bits, only 16 
bits are meaningful. The representation of pointers in memory and in the registers is exactly the same as for 
unsigned long integers, as shown in Section 3.4.2.2, “Integers.” 

3.4.2.6   Bit-fields
Members of structures are always allocated on byte boundaries, and are aligned according to their 
fundamental base type. However, bit-fields in structures can be allocated at any bit and of any length not 
exceeding the size of a long word (32 bits). Signed and unsigned bit-fields are permitted and are sign 
extended when fetched. A bit-field of type int is considered signed. 

Bytes * * * * *

short fractional 
(signed)

S short fractional 0

Bytes * * * * *

long / int 
fractional (signed)

S long / int fractional

Figure 3-12.   Fractional Integers—Dn Register Layout
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Bit-fields are always allocated from the low-order end of a word (right to left or little-endian), even if the 
option -be is specified. Bit-field sizes are not allowed to cross a long word boundary. 

In the following example, the structure more has 4-byte alignment and will have a size of 4 bytes. This is 
because the bit-fields in the structure are governed by the fundamental type long which requires a 4-byte 
alignment. 

Example 3-18.   Bit-field alignment to long word (1)

struct more {
long first : 3;
unsigned int second : 8;

};

The structure less shown in Example 3-19 requires only a one byte alignment because this is the 
requirement of the fundamental type char used in this structure. 

Example 3-19.   Bit-field alignment to character

struct less {
unsigned char third : 3;
unsigned char fourth : 8;

};

The alignments are driven by the underlying type, not the width of the fields. These alignments are to be 
considered along with any other structure members. 

In Example 3-20 below, the structure careful requires a 4-byte alignment; its bit-fields require only a 
one byte alignment, but the field fluffy requires a 4-byte alignment because its fundamental type is 
long.

Example 3-20.   Bit-field alignment to long word (2)

struct careful {
unsigned char third : 3;
unsigned char fourth : 8;
long fluffy;

};

Fields within structures and unions begin on the next possible suitably aligned boundary for their data type. 
For fields that are not bit-fields, this is a suitable byte alignment. Bit-fields begin at the next available bit 
offset, with the following exception: the first bit-field after a member that is not a bit-field will be allocated 
on the next available byte boundary. 

In the following example, the offset of the field c is one byte. The structure itself has 4-byte alignment and 
is four bytes in size because of the alignment restrictions introduced by using the long underlying data 
type for the bit-field.

Example 3-21.   Bit-field offset

struct s {
int bf: 5;
char c;

};
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3.4.3  Fractional and Integer Arithmetic
The ability to perform both integer and fractional arithmetic is one of the strengths of the SC100 C 
compiler. 

Fractional arithmetic is typically required for computation-intensive algorithms such as digital filters, 
speech coders, vector and array processing, digital control, or other signal processing tasks. In this mode, 
the data is interpreted as fractional values, and the computations are performed interpreting the data as 
fractional. Fractional arithmetic examples are shown in Example 3-22.

Often, saturation is used when performing calculations in this mode to prevent the severe distortion that 
occurs in an output signal generated from a result where a computation overflows without saturation. 
Saturation can be selectively enabled or disabled so that intermediate calculations can be performed 
without limiting, and limiting is only done on final results. 

Example 3-22.   Fractional arithmetic examples

0.5 * 0.25  -> 0.125

0.625 + 0.25 -> 0.875

0.125 / 0.5 -> 0.25

0.5 >> 1 -> 0.25

It is important to note that the notation used in Example 3-22 is for illustration purposes only, since C does 
not support the specification of fractional constants using floating-point notation. The compiler 
implements fractional arithmetic using intrinsic functions based on integer data types. For more 
information, see Section 3.4.2.4, “Fractional representation,” and Section 3.4.4, “Intrinsic Functions.” 

Integer arithmetic is invaluable for controller code, array indexing and address computations, peripheral 
setup and handling, bit manipulation, and other general purpose tasks, as shown in Example 3-23.

Example 3-23.   Integer arithmetic examples

4 * 3  -> 12

1201 + 79  -> 1280

63 / 9 -> 7

100 << 1  -> 200
3-42 SC100 C Compiler



Language Features
Data in a memory location or register can be interpreted as fractional or integer, depending on the needs of 
a user’s program. Table 3-4 shows how a 16-bit value can be interpreted as either a fractional or integer 
value, depending on the location of the binary point.

The following equation shows the relationship between a 16-bit integer and a fractional value:

Fractional Value = Integer Value / (215) 

There is a similar equation relating 40-bit integers and fractional values:

Fractional Value = Integer Value / (231) 

Table 3-5 shows how a 40-bit value can be interpreted as either an integer or fractional value, depending 
on the location of the binary point. 

Table 3-4.   Interpretation of 16-bit Data Values

Binary 
Representation1

1. Note: This corresponds to the location of the binary point when interpreting the data as fractional. If the data
is interpreted as integer, the binary point is located immediately to the right of the LSB.

Hexadecimal 
Representation

Integer Value 
(decimal)

Fractional Value 
(decimal)

0.100 0000 0000 0000 0x4000 16384 0.5

0.010 0000 0000 0000 0x2000 8192 0.25

0.001 0000 0000 0000 0x1000 4096 0.125

0.111 0000 0000 0000 0x7000 28672 0.875

0.000 0000 0000 0000 0x0000 0 0.0

1.100 0000 0000 0000 0xC000 -16384 -0.5

1.110 0000 0000 0000 0xE000 -8192 -0.25

1.111 0000 0000 0000 0xF000 -4096 -0.125

1.001 0000 0000 0000 0x9000 -28672 -0.875

Table 3-5.   Interpretation of 40-bit Data Values

Hexadecimal 
Representation

40-bit Integer in Entire 
Accumulator (decimal)

16-bit Integer in MSP 
(decimal)

Fractional Value 
(decimal)

0x0 4000 0000 1073741824 16384 0.5

0x0 2000 0000 536870912 8192 0.25

0x0 0000 0000 0 0 0.0

0xF C000 0000 -1073741824 -16384 -0.5

0xF E000 0000 -536870912 -8192 -0.25
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The following code fragment illustrates the use of integer arithmetic: 

Example 3-24.   Integer arithmetic computation

a = a + b*c; 

Example 3-25 provides an example of the use of an intrinsic function to implement fractional arithmetic.

Example 3-25.   Fractional arithmetic computation

a = L_mac(a,b,c);

Section 3.4.4, “Intrinsic Functions,” describes the use of intrinsic functions in greater detail.
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3.4.4  Intrinsic Functions
The compiler supports a large number of intrinsic (built-in) functions that map directly to SC100 assembly 
instructions. As C does not support fractional types and operations, these intrinsic functions enable 
implementation of fractional operations using integer data types.

The syntax of the compiler group of intrinsic functions is structured for full compatibility with the ETSI 
and ITU reference implementations of bit-exact standards.

3.4.4.1   Data types for intrinsic functions
The following four data types are defined for specific use with intrinsic functions: 

• Fractional short, a 16-bit fractional value mapped to a short, as described in Section 3.4.2.4, 
“Fractional representation.” 

• Fractional long, a 32-bit fractional value mapped to a long, as described in Section 3.4.2.4, 
“Fractional representation.” 

• Extended precision fractional, a 40-bit value which can only be used in intrinsic functions. 
See Section 3.4.4.1.1, “Extended precision fractional,” for details.

• Double precision fractional, a 64-bit value which can only be used in intrinsic functions. 
See Section 3.4.4.1.2, “Double precision fractional,” for details.

Extended and double precision fractional types enable algorithms to be defined which require precision 
larger than 32 bits. These data types can be used only with intrinsic functions and with assignments. 
Variables defined as extended and double precision fractionals cannot be used for standard arithmetical or 
other operations.

3.4.4.1.1   Extended precision fractional

The extended precision fractional (Word40) is a 40-bit data type which occupies the entire Dn (40-bit) 
register, as shown in Figure 3-13: 

This data type is mapped in the compiler as a structure containing two elements:

• A 32-bit integer placed to the right of the binary point.

• An 8-bit integer placed to the left of the binary point. These “guard bits” can be used to ensure a more 
accurate result when an overflow occurs.

When stored in memory, an extended precision fractional variable occupies 64 bits. The least significant 
32 bits are stored in the first 32-bit word, and the 8 most significant guard bits are stored in the second 
32-bit word in an undefined position.

See Table 3-6 on page 3-47 for a list of intrinsic functions for fractional arithmetic using guard bits.

See Example 3-27 on page 3-51 for an illustration of the use of intrinsic functions with extended precision 
fractional variables.

Bytes 0 1 2 3 4

extended precision 
fractional

guard 
bits

high low

Figure 3-13.   Extended Precision Fractional—Dn Register Layout 
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3.4.4.1.2   Double precision fractional

The double precision fractional data type (Word64) consists of 64 bits, all of which are assumed to be to 
the right of the binary point. This data type is mapped in the compiler as a structure containing two 32-bit 
elements.

See Table 3-6 on page 3-47 for a list of intrinsic functions for double precision data types.

3.4.4.1.3   Fractional constants

Fractional constants require integer notation, since floating point notation is not supported. For example, to 
express the value 0.5 as a fractional constant, the integer representation in hexadecimal must be used in 
the source code, in this case 0x4000. For further examples of fractional values and their corresponding 
hexadecimal representations, see Table 3-4 on page 3-43.

3.4.4.1.4   Initializing variables with fractional values

Variables can be initialized as fractional values, using the following macros:

• WORD16 initializes a value as a fractional short.

• WORD32 initializes a value as a fractional long.

For example, short x = WORD16(0.5) initializes x as a fractional short with the value 0x4000.

3.4.4.2   Intrinsic function categories
The following categories of intrinsic functions are provided:

• Fractional arithmetic 

• Long fractional arithmetic 

• Double precision fractional arithmetic 

• Extended precision fractional arithmetic, with guard bits 

• Architecture primitives 

• Architecture primitives that generate identical assembly instructions 

• Bit reverse addressing 

Table 3-6 on page 3-47 lists all the supported intrinsic functions by category, with a brief description of 
each function. See Section 7.15, “Built-in Intrinsic Functions (prototype.h),” on page 7-21, for more 
detailed information about each of the fractional arithmetic and long fractional arithmetic intrinsic 
functions.
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Section 3.4.4.3, “Intrinsic functions examples,” which follows Table 3-6, contains example code segments 
illustrating the use of a number of intrinsic functions.

Table 3-6.   Intrinsic Functions

a) Fractional arithmetic

Intrinsic Function Declaration Description

add short add(short,short) Short add

sub short sub(short,short) Short subtract

mult short mult(short,short) Short multiply

div_s short div_s(short,short) Short divide

mult_r short mult_r(short,short) Multiply and round

L_mac long L_mac(long,short,short) Multiply accumulate

mac_r short mac_r(long,short,short) Multiply accumulate and round

L_msu long L_msu(long,short,short) Multiply subtract

msu_r short msu_r(long,short,short) Multiply subtract and round

abs_s short abs_s(short) Short absolute value

negate short negate(short) Short negate

round short round(long) Round

shl short shl(short,short) Short shift left

shr short shr(short,short) Short shift right

shr_r short shr_r(short,short) Short shift right and round

norm_s short norm_s(short) Normalize any fractional value

max short max(short,short) Maximum value of any two short 
fractional values

min short min(short,short) Minimum value of any two short 
fractional values

saturate short saturate(short) Short saturation
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b) Long fractional arithmetic

Intrinsic Function Declaration Description

L_add long L_add(long,long) Long add

L_sub long L_sub(long,long) Long subtract

L_mult long L_mult(short,short) Long multiply

extract_h short extract_h(long) Extract 16 MSB of long word

extract_l short extract_l(long) Extract 16 LSB of long word

L_deposit_h long L_deposit_h(short) Deposit short in MSB

L_deposit_l long L_deposit_l(short) Deposit short in LSB

L_abs long L_abs(long) Long absolute value

L_negate long L_negate(long) Long negate

norm_l short norm_l(long) Normalize any long fractional value

L_max long L_max(long,long) Maximum value of any two long 
fractional values

L_min long L_min(long,long) Minimum value of any two long 
fractional values

L_shl long L_shl(long,short) Long shift left

L_shr long L_shr(long,short) Long shift right

L_shr_r long L_shr_r(long,short) Long shift right and round

L_sat long L_sat(long) Long saturation

c) Double precision fractional arithmetic

Intrinsic Function Declaration Description

D_mult Word64 D_mult(long,long) Double precision multiply

D_mac Word64 D_mac(Word64,long,long) Double precision multiply accumulate

D_msu Word64 D_msu(Word64,long,long) Double precision multiply subtract

D_add Word64 D_add(Word64,Word64) Double precision add

D_sub Word64 D_sub(Word64,Word64) Double precision subtract

D_cmpeq short D_cmpeq(Word64,Word64) Double precision compare equal

D_cmpgt short D_cmpgt(Word64,Word64) Double precision compare greater than

D_sat Word64 D_sat(Word64) Double precision saturation

D_round long D_round(Word64) Double precision round

D_set Word64 D_set(long,unsigned long) Concatenate two longs into one double 
precision value

D_extract_l unsigned long D_extract_l(Word64) Extract 32 LSB of double precision 
value

D_extract_h long D_extract_h(Word64) Extract 32 MSB of double precision 
value

Table 3-6.   Intrinsic Functions (Continued)
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d) Extended precision fractional arithmetic (with guard bits)

Intrinsic Function Declaration Description

X_mult Word40 X_mult(short,short) Short multiply to long long word

X_mac Word40 X_mac(Word40,short,short) Short multiply accumulate to long long 
word

X_msu Word40 X_msu(Word40,short,short) Short multiply subtract to long long word

X_set Word40 X_set(char,unsigned long) Concatenate char and unsigned long 
into one long long word

X_add Word40 X_add(Word40,Word40) Long add including guard bits

X_sub Word40 X_sub(Word40,Word40) Long subtract including guard bits

X_shl Word40 X_shl(Word40,short) Long shift left with guard bits

X_shr Word40 X_shr(Word40,short) Long shift right with guard bits

X_extract_h short X_extract_h(Word40) Extract 16 MSB of long long word

X_extract_l short X_extract_l(Word40) Extract 16 LSB of long long word

X_round short X_round(Word40) Round long long value

X_norm short X_norm(Word40) Normalize any long long fractional value

X_rol Word40 X_rol(Word40) Rotate left a long long word

X_ror Word40 X_ror(Word40) Rotate right a long long word

X_abs Word40 X_abs(Word40) Long absolute value with guard bits

X_sat long X_sat(Word40) Long saturation including guard bits

X_or Word40 X_or(Word40,Word40) Logical OR two long values with guard 
bits

X_trunc long X_trunc(Word40) Truncate guard bits

X_extend Word40 X_extend(long) Sign extend long value to include guard 
bits

X_cmpeq short X_cmpeq(Word40,Word40) Fractional compare equal with guard 
bits

X_cmpgt short X_cmpgt(Word40,Word40) Fractional compare greater than with 
guard bits

Table 3-6.   Intrinsic Functions (Continued)
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e) Architecture primitives

Intrinsic Function Declaration Description

L_rol long L_rol(long) Rotate left a long

L_ror long L_ror(long) Rotate right a long

mpyuu long mpyuu(long,long) Long multiply 16 LSB of two long words, 
treating both words as unsigned values

mpyus long mpyus(long,long) Long multiply 16 LSB of the first long 
word, treated as an unsigned value, by 
16 MSB of the second long word, 
treated as signed

mpysu long mpysu(long,long) Long multiply 16 MSB of the first long 
word, treated as a signed value, by 16 
LSB of the second long word, treated as 
unsigned

setnosat setnosat() Set saturation mode off

setsat32 setsat32() Set saturation mode on

set2crm set2crm() Set rounding mode to 
two’s-complement rounding mode

setcnvrm setcnvrm() Set rounding mode to convergent 
rounding mode

f) Architecture primitives that generate identical assembly instructions

Intrinsic Function Declaration Description

debug void debug() Enter Debug mode

debugev void debugev() Generate Debug event

mark void mark() If trace buffer enabled, write program 
counter to trace buffer

stop void stop() Enter Stop low power mode

trap void trap() Execute Trap exception

wait void wait() Enter Wait low power mode

ei void ei() Enable interrupts

di void di() Disable interrupts

illegal void illegal() Execute illegal exception

g) Bit reverse addressing

Intrinsic Function Declaration Description

InitBitReverse InitBitReverse Allocate a bit reverse iterator

BitReverseUpdate BitReverseUpdate Increment the iterator with bit reverse

EndBitReverse EndBitReverse Free bit reverse iterator

Table 3-6.   Intrinsic Functions (Continued)
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3.4.4.3   Intrinsic functions examples
The following example illustrates the use of a number of intrinsic functions.

Example 3-26.   Intrinsic functions

#include <prototype.h>
void Iir(short Input[], short Coef[], short FiltOut[])
{

long L_Sum;
short int Stage, Smp;
FiltOut[0] = Input[0];

for (Smp = 1; Smp < S_LEN; Smp++)
  {

L_Sum = L_msu(LPC_ROUND, FiltOut[Smp - 1], Coef[0]);
for (Stage = 1; ((0 < (Smp - Stage)) && Stage < NP); Stage++)

L_Sum = L_msu(L_Sum, FiltOut[Smp - Stage - 1], Coef[Stage]);
L_Sum = L_shl(L_Sum, ASHIFT);
L_Sum = L_msu(L_Sum, Input[Smp], 0x8000);
FiltOut[Smp] = extract_h(L_Sum);

  }
}

Example 3-27 illustrates the use of extended precision variables and intrinsic functions using guard bits: 

Example 3-27.   Intrinsic functions using extended precision 

#define M1 10
#define M2 10
#include <prototype.h>
docorr()
{

int L_sample[10];
int coeff[10]
int sample[10]
int j, i;
int shift_val;
short corr_0;
Word40 E_acc, E_sum;
E_acc = X_extend(0); E_sum = X_extend(0);
for (i = 0; i < M1; i++)
{

      for (j = 0; j < M2; j++) 
        E_acc = X_mac (E_acc, sample[j], coeff[j] );

L_sample[i] = X_sat(E_acc);
E_acc = X_abs(E_acc);

      E_sum = X_add(E_sum, E_acc);
}
 shift_val = X_norm(E_sum);
 corr_0 = 0;
 for (i = 0; i < M1; i++)
{

      sample[i] = round (L_shr (L_sample[i], shift_val));
      corr_0 = sub (corr_0, sample[i]);

}
corr = corr_0;

}
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3.4.5  Pragmas
Pragmas allow you greater control over your application, enabling you to give the compiler specific 
additional information about how to process certain statements. The pragmas that you specify in your code 
provide the compiler with context-specific hints which can save the compiler unnecessary operations, and 
help to further enhance the optimization process.

You can include as many pragmas as necessary in your source code. The sections that follow describe the 
syntax and placement rules for pragmas. 

3.4.5.1   Syntax
The pragmas supported by the compiler have the following general syntax:

#pragma pragma-name [argument(s)]

One or more of the arguments may be optional. Arguments are comma-delimited.

Each pragma must fit into one line.

3.4.5.2   Placement
Each pragma is applicable only in a certain context, and must be placed accordingly. Four categories of 
pragmas can be defined according to the placement rules, as follows:

• Pragmas which apply to functions can appear only in the scope of the function, after the opening “{”.

• Pragmas which apply to statements must be placed immediately before the relevant statement, or 
immediately before any comment lines which precede the statement.

• Pragmas which apply to variables must follow the object definition, or any comment lines which 
follow that definition. Objects referred to by pragmas must be explicitly defined.

The pragmas supported by the compiler are listed in Table 3-7 on page 3-53. The sections that follow the 
table provide a brief summary and example of the syntax and use of each pragma. The detailed functioning 
of each pragma is described in Chapter 5, “Optimization Techniques and Hints.” 
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Table 3-7.   Pragmas

h) Function pragmas Description Section Page

#pragma inline Forces function inlining. 3.4.5.3.1 3-54

#pragma noinline Disables function inlining. 3.4.5.3.1 3-54

#pragma save_ctxt Forces save and restore of all 
registers that are used in this 
procedure.

3.4.5.3.2 3-54

#pragma external func
[name = string,
convention = number, 
nosideeffects]

Defines a function as external to the 
C application, or as a function that 
can be called from outside the 
application. 

3.4.5.3.3 3-55

#pragma interrupt func Defines the specified function as an 
interrupt handler.

3.4.5.3.4 3-56

i) Pragmas which apply to statements Description Section Page

#pragma profile value Sets profiling information for a 
statement.

3.4.5.4.1 3-56

#pragma loop_count 
(lower_bound,
upper_bound,
{2/4},
remainder)

Specifies the minimum and 
maximum limits for a loop, the loop 
count divider (2 or 4), and the use of 
the remainder.

3.4.5.4.2 3-57

j) Pragmas which apply to variables Description Section Page

#pragma align var_name {4/8} Forces stricter alignment on an 
object. Needed for paired moves.

3.4.5.5.1 3-59

#pragma align *var_name {4/8} Indicates that the address of the 
variable referenced by a pointer is 
aligned as specified.

3.4.5.5.1 3-59
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3.4.5.3   Pragmas which apply to functions
The pragmas in this category provide additional information about specific functions, and are defined in 
the scope of the function to which they apply, directly after the “{” which marks the start of the scope.

3.4.5.3.1   Forcing or disabling function inlining

Inlining enables the compiler to improve optimization by replacing a function call by the entire function. 
For very small functions, for example, where the overhead of the function call is greater than the size of the 
function itself, this can be very efficient. For more information about function inlining, refer to Chapter 5, 
“Optimization Techniques and Hints.” 

You can use #pragma inline to force the compiler to inline a specific function, or #pragma 
noinline to prevent the compiler from inlining a certain function. In the code segment shown in 
Example 3-28, any calls to the function which follows #pragma noinline will not be inlined.

Example 3-28.   #pragma noinline

static int proc_30(int a)
{
#pragma noinline
    int tab_30[1000];

    tab_30[0] = 4*a;
    return(tab_30[0]);
}

3.4.5.3.2   Saving the entire context of the system

During normal processing, the compiler saves the contents of registers that have been changed, and any 
other essential data. You can force the compiler to save the entire context of the machine, including all 
registers that are used in this procedure, so that it can be restored if necessary to its previous state, at the 
exact point at which the specific function started to execute. 

Using #pragma save_ctxt to save the entire system status can incur a large overhead, and should only 
be used where absolutely necessary.

The following example illustrates the use of #pragma save_ctxt to force the compiler to save the 
complete machine context upon entry to the specified function.

Example 3-29.   #pragma save_ctxt

void EntryPoint()
{
#pragma save_ctxt
...
}

3-54 SC100 C Compiler



Language Features
3.4.5.3.3   Defining a function as external

When the compiler encounters an unresolved function call, it assumes by default that this is a call to an 
external function that exists outside the application. The pragma #pragma external enables you to:

• Confirm this assumption, by informing the compiler that the call is to an external function defined 
outside the application

• Define the function as an internal function that can be called from outside the application

The effect of the pragma depends on its placement, as described below:

• If #pragma external is specified in the global scope, the compiler does not expect to find the body 
of the function within the current application. The compiler uses standard calling conventions to call 
the function, and does not issue warnings for unresolved references. Specifying #pragma 
external in the global scope is valid only with cross-file optimization.

• If #pragma external is specified within the function scope, followed by the body of the defined 
function, the compiler recognizes this as an internal function that can be called from outside the 
application.

The following optional parameters can be specified with #pragma external:

• Specify name = string to provide a specific function name, to override the default linkage name 
allocated to the function.

• Define convention = number to select the calling convention to be used instead of the default 
standard convention. See Chapter 6, “Runtime Environment,” for further information about calling 
conventions.

• Specify nosideeffects if the function does not change any variable values in the application, and 
can be moved or duplicated in other parts of the application without making any changes. 

When nosideeffects is specified, the compiler does not need to make worst case assumptions about 
any possible impact that the function may have within the application.

In the first part of Example 3-30, printf is defined as an external function that does not exist within the 
application, and that has no effect on any variables in the application. In the second part of the example, the 
function ICanBeCalled is defined inside the application and may be called by external function calls. 
This function therefore has to obey the standard calling conventions.

Example 3-30.   #pragma external

extern void printf();
#pragma external printf [nosideeffects] 

void main()
{
  printf("Hello there\n");
}

void ICanBeCalled(int X, int Y)
{
#pragma external ICanBeCalled [name ="xyz"]
...
}
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3.4.5.3.4   Defining a function as an interrupt handler

A function that operates as an interrupt handler differs from other functions in three basic respects:

• It must save and restore all resources that it uses, as it can be called at any time an interrupt occurs, 
and cannot assume any conventions.

• It runs in “exception” mode, which forces the compiler to generate instructions that are slightly 
different from the instructions issued in normal mode.

• It cannot be passed parameters nor return a value.

You can use #pragma interrupt to define a function as an interrupt handler, as shown in the following 
example.

Example 3-31.   #pragma interrupt

void IntHandler();
#pragma interrupt IntHandler
extern long Counter;
void IntHandler()
{
Counter++;
} 

3.4.5.4   Pragmas which apply to statements
Pragmas which apply to statements are placed immediately before the relevant statement.

3.4.5.4.1   Specifying a profile value

By default, the profiler provided with the compiler enables it to make the necessary assumptions about the 
number of times to execute a given statement. You can specify #pragma profile, followed by a value 
and immediately preceding a statement, to specify to the compiler the exact number of times that the 
statement executes.

In Example 3-32, the value following #pragma profile notifies the compiler that the loop executes only 
10 times. If #pragma profile is not specified, the compiler assumes that, since this is a loop with 
dynamic bounds, the loop executes 25 times (the default). It is important to note that this assumption 
affects the optimization of the program, and not its correctness.

Example 3-32.   #pragma profile with constant value

#include <prototype.h>
int energy (short block[], int N)
{
    int i;

    long int L_tmp = 0;

    for (i = 0; i < N; i++)
#pragma profile 10
      L_tmp = L_mac (L_tmp, block[i], block[i]);

    return round (L_tmp);
}
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With if-then-else constructs, #pragma profile can be used to inform the compiler which branch 
executes more frequently, and the frequency ratio between the two branches, meaning the number of times 
one branch executes in relation to the other.

In Example 3-33, the two #pragma profile statements have the values 5 and 50. These values notify 
the compiler that the else branch section executes 10 times more frequently than the first (implied then) 
section. When used in this way, the exact #pragma profile values are not significant, since they 
indicate the frequency ratio, and not the absolute values. In this example, the values 1 and 10 would 
convey the same information.

Example 3-33.   #pragma profile with frequency ratio

#include <prototype.h>
int energy (short block[], int N)
{

int i;
long int L_tmp = 0;

if ( N>50)
#pragma profile 5

for (i = 0; i < 50; i++)
L_tmp = L_mac (L_tmp, block[i], block[i]);

else
#pragma profile 50

for (i = 0; i < N; i++)
L_tmp = L_mac (L_tmp, block[i], block[i]);

    return round (L_tmp);
}

3.4.5.4.2   Defining a loop count

The compiler tries to evaluate the number of times a loop iterates using the static information available. In 
cases where this static information is not supplied to the compiler, if you know the upper and lower limits 
of a loop, you can use #pragma loop_count to provide these values. Supplying such information, which 
cannot always be discerned automatically by the compiler, enables generation of more efficient code.

Similarly, specifying a divider for the loop count enables the optimizer to unroll loops in the most efficient 
way. The loop count can be divided by either 2 or 4, corresponding to the number of execution units. You 
can also instruct the compiler whether to use the remainder, if there is one following division of the loop 
count, to execute the loop an additional number of times.

The syntax of #pragma loop_count is:

#pragma loop_count (lower_bound, upper_bound, [{2/4}, [remainder]]) 

Define a value for lower_bound for the minimum number of times the loop will iterate, and a value for 
upper_bound for the maximum number of times. 

The divider parameter is optional. Only the values 2 or 4 may be specified as the divider.

To specify that a remainder should be used for the loop count, specify a value for remainder. The 
remainder argument is only valid if a value has been specified for the divider.
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The pragma #pragma loop_count must be placed inside the loop to which it relates, and outside any 
nested loops which the loop contains.

In Example 3-34, the loop will always iterate at least 4 times and at most 512 times. The iteration count 
will always be divisible by 4. As no remainder is specified, any remainder from the division will be 
disregarded.

Example 3-34.   #pragma loop count

void correlation2 (short vec1[], short vec2[], int N, short *result)
{
    long int L_tmp = 0;
    int i;

for (i = 0; i < N; i++)
#pragma loop_count (4,512,4)
L_tmp = L_mac (L_tmp, vec1[i], vec2[i]);

    *result = round (L_tmp);
}
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3.4.5.5   Pragmas which apply to variables
These pragmas are placed immediately after the definition of the object(s) to which they refer. Objects 
referred to by pragmas must first be explicitly defined.

3.4.5.5.1   Alignment of variables

Objects are usually aligned according to their size, as described in Section 3.4.2, “Types and Sizes.”  The 
default alignment for arrays is determined by their base type. 

An array may need to be aligned to a specified value before it can be passed to an external function. The 
pragma #pragma align can be used to force the alignment of arrays passed to an external function, to 
meet the specific alignment requirements of the function.

To force the alignment of an array before passing it to an external function, specify #pragma align, 
followed by the defined array object, and either the value 4 for 4-byte (32-bit double word) alignment or 
8 for 8-byte (64-bit quad word) alignment.

Certain instructions, such as move.2w and move.4w, which move words in pairs, may require alignment 
to be applied that is stricter than the alignment defined for the data types involved. 

In certain cases, the compiler cannot assess the alignment for dynamic objects and has to assume that the 
objects have the alignment requirements for their base type. As a result, the compiler cannot use the 
multiword move instructions for these objects. By specifying the exact alignment for one or more objects, 
you can enable the compiler to use these multiword moves and generate more efficient code. 

You can use the pragma #pragma align to provide the compiler with specific alignment information 
about pointers to arrays, in order to enable the compiler to use multiword move instructions.

To inform the compiler that the address of an array is aligned as required for multiword moves, specify 
#pragma align, followed by the pointer to the array object, and either the value 4 for 4-byte alignment 
or 8 for 8-byte alignment. When using #pragma align in this way, you should ensure that the object is in 
fact aligned as required, since this form of the pragma does not force the alignment.
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In the first part of Example 3-35, array a is forced to 8-byte alignment before being passed to the external 
function Energy. The second part of the example informs the compiler that both input vectors are aligned 
to 32 bits. The instruction move.2f may be used here.

Example 3-35.   #pragma align

#include <prototype.h>
short a[10];
#pragma align a 8

extern int Energy( short a[] );
int foo()
{

return Energy(a);
}
short Cor(short vec1[], short vec2[], int N)
{
#pragma align *vec1 4
#pragma align *vec2 4

long int L_tmp = 0;
long int L_tmp2 = 0;
int i;

for (i = 0; i < N; i += 2)
L_tmp = L_mac(L_tmp, vec1[i], vec2[i]);
L_tmp2 = L_mac(L_tmp2, vec1[i+1], vec2[i+1]);

return round(L_tmp + L_tmp2);
}
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3.4.6  Predefined Macros
The compiler shell maintains a number of predefined macros, including standard C macros, and additional 
macros which are specific to the SC100 C compiler and the SC100 architecture. Table 3-8 lists these 
predefined macros.

Table 3-8.   Predefined Macros

Macro Name Description

__LINE__ The line number of the current source line.

__FILE__ The name of the current source file.

__DATE__ The compilation date, as a character string in the form Mmm dd yyyy e.g. Jan 23 1999.

__TIME__ The compilation time, as a character string in the form hh:mm:ss.t

__STDC__ Decimal constant 1, indicating ANSI conformance.

__STDC_VERSION__ Defined in ANSI C mode as 199409L.

__SIGNED_CHARS__ Defined when char is signed by default

__VERSION__ The version number of the compiler, as a character string in the form nn.nn.

_ENTERPRISE_C_ Defined for use with the Enterprise compiler. If your source file may be compiled with 
other compilers apart from the Enterprise, this macro should be included in a conditional 
statement to ensure that the appropriate commands are activated, for example: 
#ifdef _ENTERPRISE_C_
(Enterprise-specific commands)
#else
....
#endif 

BIG_ENDIAN The most significant bits in the lower address.

LITTLE_ENDIAN The least significant bits in the lower address. 

_SC100_ Defined for use with all compilers based on the SC100 architecture. If your source file 
may be compiled with other compilers apart from those based on the SC100 architecture, 
this macro should be included in a conditional statement to ensure that the appropriate 
commands are activated, as shown in the following example: 
#ifdef _SC100_

(SC100-specific commands)
#else
....
#endif 

_SC110_
_SC140_

The architecture variant, which specifies the number of MAC units to be used by the 
compiler:
_SC110_ indicates 1 MAC unit.
_SC140_ indicates 4 MAC units.

Only one of these macros is valid for each invocation of the compiler. The macro that is 
selected, and the value of the architecture variant, are determined by the value set for the 
-arch option when the compiler is invoked. If no value is specified for -arch, the default 
is SC140 (_SC140_). 

See Section 3.3.8.1, “Defining the architecture,” for further information about the 
-arch option.
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Chapter 4
Interfacing C and Assembly Code

The SC100 C compiler supports interfacing between C source code and assembly code, enabling access to 
functionality not provided by C. This chapter describes the features of this interface and provides 
instructions, guidelines, and examples.

The following sections are contained in this chapter:

• Section 4.1, “Inlining a Single Assembly Instruction,” explains how to use an individual assembly 
instructions in your C source code.

• Section 4.2, “Inlining a Sequence of Assembly Instructions,” describes how to embed an assembly 
function consisting of a sequence of assembly instructions into your C code.

• Section 4.3, “Calling an Assembly Function in a Separate File,” explains how an assembly function 
that is contained in a separate file can be used in conjunction with your C source files.

• Section 4.4, “Including Offset Labels in the Output File,” describes the use of symbolic offsets for 
C data structures in the assembly output file.

4.1   Inlining a Single Assembly Instruction
A single assembly instruction can be inlined in a sequence of C statements and compiled by the compiler. 
To ensure successful compilation of an inlined assembly instruction, note the following guidelines:

• The compiler passes an inlined instruction to the assembly output file in text form, and therefore has 
no knowledge of the contents or side effects of the instruction. It is important that you ensure that 
there is no risk of the instruction affecting the C and/or assembly environment and producing 
unpredictable results. For example, do not use an inlined assembly instruction to change the contents 
of registers, as the compiler has no knowledge of such changes. Similarly, do not include any jumps 
or labels, which access the C code and may affect the correctness of the tracking algorithms.

• The compiler ignores inlined assembly code instructions.

• Since the compiler treats the assembly instruction as a string of text, it cannot perform any error 
checking on the instruction. Check the syntax and text of the instruction carefully prior to 
compilation. Errors in assembly code are identified only at the assembly stage of the compilation 
process.

• A single inlined assembly instruction cannot reference a C object. The only way to reference a 
C object in assembly code is by inlining a sequence of assembly instructions, as described in 
Section 4.2, “Inlining a Sequence of Assembly Instructions.” 
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To inline a single assembly instruction, use the asm statement. The syntax is as for a standard function call, 
with one argument enclosed in double quotation marks, as shown below in Example 4-1.

Example 4-1.   Inlining a single assembly instruction

asm("wait");

4.2   Inlining a Sequence of Assembly Instructions
It is possible to use assembly code that references C objects, by defining a separate function that consists of 
a sequence of assembly instructions, and inlining this in your C code. Such a function is implemented 
entirely in assembly and may not include C statements, but can accept parameters referenced by the 
assembly code.

4.2.1  Guidelines for Inlining Assembly Code Sequences
The following guidelines are similar to those for the inlining of individual assembly instructions, described 
in Section 4.1, “Inlining a Single Assembly Instruction,”  and apply also to the use of inlined sequences of 
assembly code:

• The compiler passes a sequence of inlined instructions to the assembly output file as a string of text, 
and therefore has no knowledge of the contents or side effects of the instructions. It is important that 
you ensure that the assembly function does not affect the C and/or assembly environment and does 
not produce unpredictable results. For example, do not use inlined assembly instructions to change 
the contents of registers, and do not alter the sequence of C code instructions by specifying jumps, 
as the compiler has no knowledge of such changes.

• The optimizer cannot use functions based on inlined sequences of assembly code; thus, they are 
ignored during optimization. Avoid using assembly-based functions if a C alternative is available, in 
order to ensure maximum optimization of the code.

• The compiler performs no error checking on the sequence of assembly instructions. Assembly code 
errors are identified only at the assembly stage of the compilation process.

• By definition, inline assembly functions are static and declare no external linkage; therefore, you 
must call inline assembly functions from within the same module that they are declared.

The following guidelines apply specifically to the use of inlined sequences of assembly code for asm 
functions:

• When passing parameters to an inlined sequence of assembly instructions, registers are not 
automatically allocated. For each parameter, you must specify the register in which the parameter 
enters or exits the function. There is no need to save and restore the registers before and after the 
function.

• The compiler cannot deduce whether an inlined function is likely to affect the application, for 
example, if it modifies global variables. It is important that you provide the compiler with such 
information if there is a possibility that the function may have any side effects.

• A function that is initially defined as stand-alone may in certain circumstances be included in another 
sequence of instructions. Therefore, inlined functions should not use statements such as RTS. If the 
function is used in a sequence of instructions, the compiler automatically adds the necessary return 
statements.
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• The compiler does not automatically allocate local variables for assembly functions to use. If a 
function requires the use of local variables, you must allocate these variables specifically on the 
stack or define them as static variables.

• Assembly functions defined as a sequence of instructions can access global variables in the C source 
code, since these are static by definition.

4.2.2  Defining an Inlined Sequence of Assembly Instructions
When defining a sequence of inlined assembly instructions:

• define the header for the function before the body of the instructions, and

• specify the registers that each parameter will use. 

You can define a list of read parameters, a list of write parameters, and/or a list of modified registers, as 
appropriate. 

The syntax for inlining a sequence of assembly instructions is as follows:

asm <func prototype>
{
asm_header

optional arg binding
optional return value
optional read list
optional write list
optional modified reg list

asm_body
<asm code>

asm_end
}

optional arg binding
.arg

<ident> in <reg>;
<ident> in <reg>;
...

optional return value
return in <reg>

optional read list:
.read <ident>,<ident>,...;

optional write list:
.write <ident>,<ident>,...;

optional modified reg list:
.reg <reg>, <reg>, ...;

The following syntax conventions apply:

• Identifiers must have the prefix _ (underscore).

• Registers must have the prefix $ (dollar sign).

• Labels must have the suffix . (period).
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Example 4-2 shows the syntax for an inlined assembly function that takes two arguments as input 
parameters and returns one value. The first argument is passed in the register d0, and the second parameter 
is passed in the register r1. The result is returned in d0.

Example 4-2.   Inlining syntax

asm int t6( int param1, int *param2)
{
asm_header
.arg

_param1 in $d0;
_param2 in $r1;

return in $d0;
.reg $d0,$d1,$r1;
asm_body

move.l (r1),d1
add    d0,d1,d0

asm_end
}

In Example 4-3, the function t6 accepts two parameters, an integer p1 passed in register d14, and a 
pointer p2 passed in r7. The result of the function is returned in d14.

Example 4-3.   Simple inlined assembly function 

#include <stdio.h>
int A[10] = {1,2,3,4,5,6,7,8,9,0};
asm int t6(int p1, int *p2)
{
asm_header
.arg

_p1 in $d14;
_p2 in $r7;

return in $d14;
.reg $d14,$d1,$r7;
asm_body

move.l (r7),d1
add    d14,d1,d14

asm_end
}
int main()
{

int k = 8;
int s;

s = t6(k,&A[3]);

printf("S= %d\n",s);

return s;
}
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Example 4-4 shows the use of labels and hardware loops within inlined assembly functions. You should 
use hardware loops within assembly functions only if you know that the loop nesting is legal. In this 
example, the function is called from outside a loop, and the use of hardware loops is therefore allowed.

Example 4-4.   Inlined assembly function with labels and hardware loops

#include <stdio.h>

char sample[10] = {9,6,7,1,0,5,1,8,2,6};

int status;

asm char t7(int p)
{
 asm_header
.arg

_p in $d7;
return in $d8;
.reg $d7,$d8,$r1;

asm_body
clr d8 
move.l #_sample,r1
doen3 d7

 dosetup3 _L10

 loopstart3
_L10: move.b (r1),d1
 add d8,d1,d8
 inc d1
 move.b d1,(r1)+
 loopend3

asm_end
}

int main()
{
 int m=8;
 int s,i;

for(i=0;i < 10;i++) 
{

   sample[i] *= 2;
   printf("%d ",sample[i]);
  }
 printf("\n");
 s = (int)t7(m);
 printf("S= %d\n",s);

 for(i=0;i < 10;i++)
   printf("%d ",sample[i]);
 printf("\n");
 return 1;
}
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Example 4-5 shows how global variables are referenced within an inlined assembly function. Global 
variables are accessed using their linkage name, which is by default the variable name prefixed by the 
character _ (underscore). The variables vector1 and vector2 are therefore accessed within the function 
as _vector1 and _vector2 respectively.

Example 4-5.   Referencing global variables in an inlined assembly function

#include <stdio.h>

short vector1[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
int vector2[] = {11,12,13,14,15,16,17,18,19,1,2,3,4,5,6};
short result_1=0;
int result_2=0;

asm void test(int n, short *r1,int *r2)
{
 asm_header
.arg
   _n  in $r1;
   _r1 in $r3;
   _r2 in $r7;
.reg $d0,$r1,$r6,$r11,$r3,$r7;

asm_body
  move.l        #_vector1,r6
  move.l        #_vector2,r11
  addl1a        r1,r6
  addl2a        r1,r11
  move.w        (r6),d0
  asrr          #<2,d0
  move.w        d0,(r3) move.l (r11),d1
  asl           d1,d2
  move.l        d2,(r7)
asm_end
}

int main(void)
{

test(12,&result_1,&result_2);
printf("Status = %d %d\n",(int)result_1, result_2);
return (int)result_2;

}
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4.3   Calling an Assembly Function in a Separate File
The compiler supports calls to assembly functions that are contained in separate files, and enables you to 
integrate these files with your C application.

To include a call to an assembly function in your program, follow the steps described below:

1. Write the assembly function in a separate file from your C source files. Use the standard 
calling conventions, as described in Chapter 6, “Runtime Environment.” 

2. Assemble the file, if required. This step is optional.

3. In your C source file, define the assembly function as an external function.

4. Specify both the C source file and the assembly file as input files in the shell command line 
to integrate the files during compilation.

The following examples show how a segment of C code calls a function that performs an FFT algorithm 
implemented in assembly.

4.3.1  Writing the Assembly Code
Example 4-6 shows the assembly code for the FFT algorithm, in the file fft.sl.

Example 4-6.   Assembly function in a separate file

;
; extern void fft(short *, short*);
; 
; Parameters:  pointer to input buffer in r0
; pointer to output buffer in r1
;
_fft:   

push d6 push d7 ;Save and restore d6, d7, r6, r7, according to push r6 push r7  
;calling conventions. 

    
implementation of FFT algorithm >

        
pop r6  pop r7 
pop d6  pop d7 
rts
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4.3.2  Calling the Assembly Function
The C code that calls the FFT function is shown in Example 4-7. This source code is saved in the file 
test_fft.c.

Example 4-7.   C code calling assembly function

#include <stdio.h>
extern void fft(short *, short*);
#pragma external fft

short in_block[512];
short out_block[512];
int in_block_length, out_block_length;

void main()
{

int i;
FILE *fp;
int status;
in_block_length=512;
out_block_length=512;
fp=fopen("in.dat","rb");

if( fp== 0 )
{

      printf("Can’t open parameter file: input_file.dat\n");
      exit(-1);

}

printf("Processing function fft \n");

while ((status=fread(in_block, sizeof(short), in_block_length, fp)) ==  
in_block_length)
{

       fft(in_block,out_block);
}

}
i

4.3.3  Integrating the C and Assembly Files
Example 4-8 shows how the two input files are specified in the shell command line:

Example 4-8.   Integrating C and assembly files

scc -o test_fft.eld test_fft.c fft.sl
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4.4   Including Offset Labels in the Output File
In some cases when assembly functions are called, data structures need to be shared between the C source 
code and the assembly code. In the following example, the layout of the structure complex needs to be 
used by the assembly code.

Example 4-9.   Data structure shared between C and assembly

struct complex
{   
    short r;
    short i;
};

struct complex CVEC1, CVEC2;
volatile struct complex res;

void main()
{
    cmpy (&CVEC1, &CVEC2, &res);
}

The -do option in the shell command line instructs the compiler to include the details of C data structures 
in the output assembly file. You can specify this as an additional option in the command line, as shown in 
Example 4-10:

Example 4-10.   Specifying the output of offset information

scc -o test.eld test.c cmpy.sl -do

When the -do option is specified, the output file shows the offsets for all field definitions in each data 
structure defined in the C source code. The symbolic label is composed of: 
<module name>_<structure name>_<field name>, as shown in the following example:

Example 4-11.   Data structure offsets in the assembly output file

test_complex_r equ 0
test_complex_i equ 2
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The symbolic labels in the output file can be used in the assembly code, making the code more readable, as 
illustrated in Example 4-12. Using these symbolic labels also makes maintenance of the assembly code 
easier when changes are made to the C code.

Example 4-12.   Using symbolic offsets in assembly code

;=========================================================
; Function cmpy
;
; Parameter x        passed in r0
; Parameter y        passed in r1
; Parameter result   passed in (sp-12)
;=========================================================

section.txt
global  _cmpy 
align 2

_cmpy
[
move.2f  (r0),d0:d1  
move.2f  (r1),d2:d3  
]

[
mpy d0,d2,d5
mpy d0,d3,d7
[
]
macr -d1,d3,d5
macr d1,d2,d7
move.l (sp-12),r2
]
rtsd                
moves.f d5,(r2+test_complex_r)   moves.f  d7,(r2+test_complex_i)

endsec
4-10 SC100 C Compiler



Chapter 5
Optimization Techniques and Hints

This chapter explains how the SC100 optimizer operates, and describes the optimization levels and 
individual optimizations which can be applied. The following sections are included in this chapter:

• Section 5.1, “Optimizer Overview,” provides a general description of the optimizer, illustrates how 
the optimizer transforms code, and outlines the available optimization levels, modes and options.

• Section 5.2, “Using the Optimizer,” explains how to invoke the optimizer, and how to achieve the 
required results for your application.

• Section 5.3, “Optimization Types and Functions,” describes the individual optimizations in detail.

• Section 5.4, “Guidelines for Using the Optimizer,” provides advice on ways to write source code that 
can make the best use of the optimizer’s capabilities.

• Section 5.5, “Optimizer Assumptions,” describes the assumptions made by the optimizer in different 
circumstances.
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5.1   Optimizer Overview
The SC100 optimizer converts preprocessed source files into assembly output code, applying a range of 
code transformations which can significantly improve the efficiency of the executable program. The goal 
of the optimizer is to produce output code which is functionally equivalent to the original source code, 
while improving its performance in terms of execution time and/or code size.

5.1.1  Basic Blocks
The majority of the code transformations operate on basic blocks of code. A basic block of code is a linear 
sequence of instructions for which there is only one entry point and one exit point. There are no branches 
in a basic block. In general, bigger basic blocks enable better optimization, since the scope for further 
optimization is increased. 
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5.1.2  Linear and Parallelized Code
The optimizer can produce code that takes full advantage of the multiple execution units provided by the 
SC100 architecture. 

Executable programs process instructions in the form of execution sets, with one execution set per cycle. 
The optimizer can increase the number of instructions in an execution set, enabling two or more execution 
units to process instructions in parallel, in the same cycle. In this way, linear code is transformed into 
parallelized code:

• Linear code uses only one execution unit, regardless of the number of units available. Each 
execution set consists of one instruction only.

• Parallelized code execution sets can comprise multiple instructions which execute in parallel using 
the available number of execution units. Parallelized code executes faster and more efficiently than 
linear code.

Figure 5-1 illustrates the transformation of linear code, comprising a series of single instruction execution 
sets, into parallelized code, which consists of execution sets containing one or more instructions each: 

Figure 5-1.   Linear and Parallelized Code

Dependencies between instructions can restrict the level of parallelization that the optimizer can achieve. 
For more information, see Section 5.3.1, “Dependencies and Parallelization,” and Section 5.4, “Guidelines 
for Using the Optimizer.” 
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5.1.3  Optimization Levels and Options
Three basic optimization levels are provided, all of which maintain a balance between code density and 
speed:

Select only one of the above optimization levels for each compilation.

Two supplemental optimizations are available that you can combine with Level 1 or Level 2 optimization:

• Space optimization enables you to apply the indicated level of optimization, while weighting the 
optimization process in favor of program size. Programs or modules optimized for space require a 
smaller amount of memory but may sacrifice program speed.

• Cross-file optimization is a complex process, which requires significantly more compilation time 
than non-cross file optimization. With cross-file optimization, the optimizer applies the required 
level of optimization across all the files in the application at the same time, and as a result produces 
the most efficient program code.

Cross-file optimization is generally applied at the end of the development cycle, after all source files 
are compiled and optimized individually or in groups. By default, the optimizer operates without 
cross-file optimization.

Table 5-1.   Optimization Levels

Optimization Levels Description

Level 0 compiles the fastest and produces the slowest 
output as linear code. Level 0 produces unoptimized 
code.

Level 1 takes longer to compile, applies target-independent 
optimizations, and produces optimized linear code.

Level 2 (the default) compiles more slowly than Level 1, 
applies all target-independent optimizations, as well 
as all target-specific optimizations, and can produce 
faster, parallelized code
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Table 5-2 below summarizes the optimization options. This table also includes a cross-reference to the 
sections containing detailed descriptions of the individual optimizations applied by each of the options.

Table 5-2.   Optimization Options Summary

Option Description Benefits Section Page

-O0
(Level 0)

• Disables all optimizations. 

• Outputs non-optimized, linear assembly 
code.

• Compiles fastest.

• Generates assembly code which 
correlates clearly with the C source 
code, and can assist debugging.

-O1
(Level 1)

• Performs all target-independent 
(non-parallelized) optimizations, such as 
function inlining. 

• Omits all target-specific optimization 
steps.

• Outputs optimized, linear code. 

• Compiles faster than option -O2 
(the default). 

• Produces faster programs than 
option -O0.

5.3.2 5-9

-O2
(Level 2)
(Default)

• Performs all optimizations. 
• Outputs optimized, non-linear assembly 

code. 

• Takes advantage of parallel 
execution units, producing the 
highest performance code possible 
without cross-file optimization. 

5.3.3 5-20

-Os
Space 
Optimization

• Performs the indicated level of 
optimization, with emphasis on reducing 
code size.

• Can be specified together with any of the 
other optimization options except -O0. 

• Produces optimized assembly code 
which is small.

5.3.4 5-33

-Og
Cross-file 
Optimization

• Performs cross-file optimization. 

• Can be specified together with any of the 
other optimization options except -O0.

• Produces the most efficient results when 
specified together with the -O2 (default) 
option.

• Compiles significantly slower than the 
other options. 

• Takes advantage of the visibility of 
all input files to implement the 
specified optimization level across 
the entire application. 

• Produces the fastest runtime code. 

5.3.5 5-35

-no_over
flow

• Tells the compiler that the application 
does not rely on the ANSI/ISO C defined 
overflow behavior of operations on 
unsigned integral data-types.

• Generates more efficient code 
sequences.

• Results in smaller code size.
• Produces faster runtime code.

6.5.1 6-25
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5.2   Using the Optimizer
By default, the compiler optimizes all source code files using Level 2 optimization without cross-file 
optimization. You can choose to optimize your source code at the level that you require at each stage of 
program development, and you can optimize individual sections of the program according to their purpose 
in the application. For example, you may wish to prepare your application as follows:

• During initial development stages: Use the default Level 2 optimization to compile your source 
code files, individually or in groups. If required, optimize certain sections of the application for 
maximum speed, and optimize other sections for size, to reduce the memory space they occupy. 

• During final development stages: Select Level 2 and cross-file optimization, in order to apply all 
optimizations across the entire application. The compilation is slower, but produces the most 
effective optimization results.

You select the optimization level and mode to be applied by specifying one or more options in the shell 
command line, as described below in Section 5.2.1, “Invoking the Optimizer.” 

5.2.1  Invoking the Optimizer
The optimizer can be invoked by including the required option(s) in the shell command line or command 
file, as illustrated in the examples that follow. For more detailed information about the use and syntax of 
the shell command line, refer to Section 3.2, “Invoking the Shell,” on page 3-9.

The command line shown in Example 5-1 invokes the optimizer with one input source file, and the default 
optimization settings. The optimizer applies Level 2 optimizations without cross-file optimization.

Example 5-1.   Invoking the optimizer with default settings

scc -o file.eld file.c

Example 5-2 shows how to invoke the optimizer with the Level 1 option, to apply target-independent 
optimizations only. The optimizer operates without cross-file optimization.

Example 5-2.   Invoking the optimizer for target-independent optimizations only

scc -O1 -o file.eld file.c

The command line shown in Example 5-3 invokes the optimizer in cross-file optimization mode. The 
optimizer processes all the specified source files together, applying the default Level 2 optimizations to all 
the modules in the application.

Example 5-3.   Invoking the optimizer with cross-file optimization

scc -Og -o file.eld file1.c file2.c file3.c
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5.2.2  Optimizing for Space
Your application, or specific parts of it, may require code that occupies the least possible space in memory. 
You can optimize the file(s) for space at the expense of program speed.

To activate space optimization, specify the -Os option in the shell command line. See Section 5.3.4, 
“Space Optimizations,” for details of the optimization functions for this option.

The -Os option generates the smallest code size for the given optimization level. If no optimization level is 
specified with -Os, the -O2 optimization level is selected by default. All optimizations associated with the 
given optimization level are applied, except those noted in Section 5.3.4, “Space Optimizations,”  with the 
emphasis on functions which reduce code size.

Depending on your application, the best code density might be achieved using -Og and -Os together 
along with the appropriate memory model switch for your application. See Section 6.2, “Memory 
Models,” on page 6-5 for details about the memory models.

5.2.3  Using Cross-File Optimization
Once you have optimized your individual source files and groups of files, you can invoke the optimizer in 
cross-file mode to ensure maximum optimization across the entire application, in order to produce the most 
efficient code. 

With cross-file optimization, all the code in the application is processed by the compiler at the same time. 
The optimizer has no need to make worst case assumptions since all the necessary information is available. 
This enables the optimizer to achieve an extremely powerful level of optimization. 

Compiling with cross-file optimization entails high consumption of required resources, and has a slow 
compilation time. In addition, because of the interdependency that cross-file optimization creates between 
all segments of the application, the entire application needs to be recompiled if any one source code file is 
changed. For these reasons, cross-file optimization is generally used at the final stage of development. 

To receive optimal results using cross-file optimization, follow these rules:

1. You must compile the entire application together.

2. You can only link the Standard C library that is shipped with the Compiler.

3. Assembly functions can only call other assembly functions and library functions

For a graphic representation of how the compiler operates with and without cross-file optimization, see 
Section 3.2, “Invoking the Shell,” on page 3-9.

To activate cross-file optimization, specify the -Og option in the shell command line, as shown in 
Example 5-3 on page 5-6. While you can specify this option together with any of the other optimization 
level options, cross-file optimization is generally recommended with optimization Level 2. The -O2 option 
is the default and may be omitted.
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5.3   Optimization Types and Functions
The optimizer implements two main types of optimization:

• Target-independent optimizations improve the output code without taking into account the 
properties of the target machine. These optimizations are described in detail in Section 5.3.2, 
“Target-Independent Optimizations.” 

• Target-specific optimizations achieve code improvements by exploiting the architecture features of 
the target machine. Section 5.3.3, “Target-Specific Optimizations,” provides a description of these 
optimizations.

Both sets of optimizations can be applied to individual files and groups of files, with or without cross-file 
optimization. Refer to Section 5.2.3, “Using Cross-File Optimization,” and Section 5.3.5, “Cross-File 
Optimizations,” for more information.

Changes in the code as a result of one optimization may enable another optimization to be applied, 
producing an accumulative effect.

5.3.1  Dependencies and Parallelization
Dependency between instructions directly limits how successfully the optimizer can apply the various 
optimizations. An instruction is considered to be dependent on another if a change in their order of 
execution influences the result of the operation.

The optimizer can group instructions into parallelized execution sets only if these instructions do not 
contain dependencies. For a description of parallelized execution sets, refer to Section 5.1.2, “Linear and 
Parallelized Code.”  Parallelization of different parts of the program, or of iterations of the same loop, can 
significantly increase the speed of the executable application.

Example 5-4 illustrates a simple dependency between two instructions. The value of d0 is entirely 
different when the order of these instructions is reversed. These instructions cannot be executed in parallel.

Example 5-4.   Simple instruction dependency

  move.w  #5,d0 ; Sets register d0 to 5
  add      d0,d1,d2 ; Adds the values in d0 and d1 into register d2

An example of dependency arising from an algorithm is shown in Example 5-5. The value of the variable 
sum must be calculated before it can be used in the L_mac instruction. 

Example 5-5.   Algorithm instruction dependency

sum = mpy(a,b);
result = L_mac(sum,c,d);

The optimizer can operate most effectively with code which contains as few dependencies as possible. 
Section 5.4, “Guidelines for Using the Optimizer,” provides more detailed advice for writing code that 
avoids dependencies and makes the best use of the optimizations.

The sections that follow describe the operation of individual optimizations in detail, and are intended for 
advanced users of the SC100 C compiler. If you do not require this level of detail, you may wish to skip 
these sections, and turn directly to Section 5.4, “Guidelines for Using the Optimizer.” 
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5.3.2  Target-Independent Optimizations
In the high-level optimization phase, a number of general, target-independent optimizations are 
implemented. All target-independent optimizations are applied when either optimization Level 1 
(option -O1) or the default optimization Level 2 (option -O2) is selected.

These target-independent optimizations are summarized in Table 5-3, and examples of each are given in 
the sections that follow.

For a detailed discussion of the principles behind target-independent optimizations, refer to Compilers 
Principles, Techniques, and Tools, by Aho, Sethi, and Ullman.
 

The output from the target-independent optimizations is in the form of linear assembly code.

Table 5-3.   Summary of Target-Independent Optimizations

Optimization Description Section Page

Target-Independent Strength reduction 
(loop transformations)

Transforms array access patterns and induction 
variables in loops, and replaces them with pointer 
accesses

5.3.2.1 5-10

Function inlining Substitutes a function call with the code of the 
function

5.3.2.2 5-16

Common subexpression elimination Replaces an expression with its value if it occurs 
more than once

5.3.2.3 5-17

Loop invariant code Moves code outside a loop if its value is unchanged 
by the loop

5.3.2.4 5-17

Constant folding and propagation Calculates the value of an expression at 
compilation time if it contains known static 
constants

5.3.2.5 5-18

Jump-to-jump elimination Combines jump instructions 5.3.2.6 5-19

Dead code elimination Removes code that is never executed 5.3.2.7 5-19

Dead storage/assignment elimination Removes redundant variables and value 
assignments

5.3.2.8 5-19
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5.3.2.1   Target-Independent Strength reduction (loop transformations)
The purpose of strength reduction is to increase the effectiveness of the code by transforming operations 
which are “expensive” in terms of resources, into less expensive, linear operations. For example, addition 
and subtraction are linear functions which require less operation cycles than multiplication and division. 

When an address calculation that contains multiplication is replaced by one containing addition, the 
amount of resources required by the code is significantly reduced, since addition can be implemented using 
the complex addressing mode of the Address Generation Unit (AGU). When the multiplication appears 
within a loop, the benefit of the replacement is further increased.

The strength reduction optimization identifies and transforms induction variables, meaning variables 
whose successive values form an arithmetic progression, usually within a loop. An example of an 
induction variable is a subscript which points to the addresses of array elements, and increases with each 
iteration of the loop. The computation of such a variable can be moved to a position outside the loop to 
avoid repeated operations, and/or transformed for use with linear operations.

Simple and complex loops and array access patterns are transformed where possible into simpler, linear 
forms, as described in the sections that follow.

5.3.2.1.1   Simple loops

Example 5-6 shows the generated pseudocode and output assembly code for a simple loop which 
initializes an array. The loop structure is static, meaning that its induction variables, the loop counter i and 
the array offset t1, both increase by increments of known constant values.

Before optimization, the calculation of the value of t1 is within the loop, and is incremented by 
multiplication. After optimization, the initial value of t1 is set outside the loop, and its value is 
incremented inside the loop by addition. The resulting values are identical for both forms, but in the 
optimized version the resource overhead is considerably lower.

Example 5-6.   Loop transformation - simple loop

C source code
int table[100];
step = 1;

for(i=0; i<100; i+=step)
table[i] = 0;

Pseudocode before optimization Pseudocode after optimization
i = 0;

L1 t1 = i * 4;
table[t1] = 0;
i++;
if(i<100) goto L1

i = 0;
t1 = i * 4;

L1 table[t1] = 0;
t1 = t1 + 4;
i++;
if(i<100) goto L1

Assembly code output
  move.l #_table,r0   clr d2
  loopstart3

move.l  d2,(r0)+
  loopend3
5-10 SC100 C Compiler



Optimization Types and Functions
The same principles also apply to more complex loop structures and array access patterns, as described in 
the sections that follow:

• Dynamic loops, in which increments are based on a variable whose value is not known at 
compilation time

• Multi-step loops, in which the loop iterator increments more than once in each iteration of the loop

• Composed variable loops, in which one or more variables or iterators are linked to each other in a 
linear relationship

• Square loops, which access elements in a two-dimensional array as in a matrix, on a row-by-row 
basis

• Triangular loops, which are similar to square loops, but which access each row in the matrix from 
an incremented starting position in each subsequent row

5.3.2.1.2   Dynamic loops

In a dynamic loop, one or more increments are based on variables whose values are not known at 
compilation time.

Example 5-7 shows the generated code for a dynamic loop in which the value of the loop increment and its 
upper limit are not known at the time of compilation. The optimization removes the initial multiplication 
instruction from the body of the loop, and inside the loop the multiplication increment instruction is 
replaced by an addition instruction.

Example 5-7.   Loop transformation - dynamic loop

C source code

step = step_table[1];
for(i=0; i<MAX; i+=step)

table[i] = 0;

Pseudocode before optimization Pseudocode after optimization
step = step_table[1];
i = 0;

L1 t1 = i * 2;
table[t1] = 0;
i = i + step;
if(i<MAX) goto L1

Assembly code output

i = 0;
step = step_table[1];
t1 = i * 2;
t2 = step * 2;

L1 table[t1] = 0;
t1 = t1 + t2;
i = i + step;
if(i<MAX) goto L1

L2
clr d3 add d1,d0,d1
move.l d3,(r1) cmpge.w #100,d1
adda r2,r1
jf L2
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5.3.2.1.3   Multi-step loops

Loops in which the loop iterator increments more than once in each iteration of the loop are defined as 
multi-step loops.

In the multi-step loop shown in Example 5-8, the loop iterator i increments twice within the loop. In this 
case, i is transformed into an induction variable which increments in linear progression in three stages.

Example 5-8.   Loop transformation - multi-step loop

C source code

int table[10];
for(i=0; i<10; i++)
{

table[i] = i;
i++;
table[i] = 0;

}

Pseudocode before optimization Pseudocode after optimization

i = 0;
L1 t1 = i * 2;

table[t1] = i;
i = i + 1;
t2 = i * 2;
table[t2] = i;
i= i + 1;
if(i<10) goto L1

i = 0;
t1 = i * 2;
t2 = i * 2 + 2;
t3 = i;
Repeat 10 times:

table[t1] = t3;
table[t2] = 0;
t1 = t1 + 4;
t2 = t2 + 4;
t3 = t3 + 2;

Assembly code output

loopstart3
L93

move.l d0,(r0)+n3 add #<2,d0

move.l d2,(r1)+n3
loopend3
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5.3.2.1.4   Composed variable loops

A composed variable loop incorporates one or more variables or iterators which have a linear relationship 
between them. The loop transformation optimizes such loops by moving the multiplication instruction to a 
position outside the loop, and by substituting one of the variables with a constant.

This optimization can be applied only when the variables are linked by linear arithmetic functions, 
meaning those calculations involving addition or subtraction of the variables, or multiplication of a 
variable by a constant. Functions which include non-linear operations, such as multiplication of two 
induction variables, cannot be optimized in this way.

Example 5-9 illustrates the generated code for a composed variables loop. In this example the increment is 
the result of a linear calculation using the two induction variables i and j.

5.3.2.1.5   Square loops

A square loop is a two-dimensional array access pattern which is similar to a matrix in which cells are 
accessed horizontally in rows, starting at the first cell in each row. 

The code that is initially generated for a square loop uses a doubly-nested loop with two induction 
variables. These variables are incremented by multiplication, as the loop progresses through the array 
elements in each row, and at the start of each new row, as shown in Figure 5-2.

Example 5-9.   Loop transformation - composed variables

C source code

int table[100];
for(i=0, j=0; i<10; i++)

{

table[10 * i + j] = i;
j++;

}

Pseudocode before optimization Pseudocode after optimization

i = 0;
j = 0;
t1 = i * 10;

L1 t2 = t1 + j;
t3 = t2 * 2; /* address */
table[t3] = i;
i = i + 1;
t1 = t1 + 10;
j = j + 1;
if(j < 10) goto L1

i = 0; j = 0;
t1 = 1 * 10;
t2 = t1 + j;
t3 = t2 * 2;
Repeat 10 times:

table[t3] = i;
i = i + 1;
t3 = t3 + 22;

Assembly code output

loopstart3
L93

move.l d0,(r0)+n3 inc d0
loopend3
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Figure 5-2.   Square Loop

The loop transformation changes such a two-dimensional array into one row containing all the elements in 
one straight string. The multiplication instructions are replaced by additions, as the progression can now be 
performed on a linear basis. An example of the transformation of a square loop is shown below in 
Example 5-10.

Example 5-10.   Loop transformation - square loop

C source code

int table[70][70];
int i, j;
for(i=0; i<35; i++)

for(j=0; j<70; j++)
c+=table[i][j];

Pseudocode before optimization Pseudocode after optimization

i = 0;
L1 j = 0;
L2 tmp1 = i * 140;

tmp2 = j * 2;
tmp3 = tmp1 + tmp2;
tmp4 = table[tmp3];
c = c + tmp4;
j++;
if(j < 70) goto L2

i++;
if(i<35) goto L1

tmp1 = 0;
Repeat 35 times

tmp2 = table + tmp1; 
 /* row base address */
Repeat 70 times

tmp3 = *tmp2;
 /* pointer to cell */
c = c + tmp3;
tmp2 = tmp2 + 2;

tmp1 = tmp1 + 140;
 /* next matrix row */

Assembly code output

loopstart2
L98

doensh3 d0
loopstart3

L97
move.l d1,(r0)+
loopend3

L94
loopend2
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5.3.2.1.6   Triangular loops

A triangular loop array access pattern is similar to the square loop described above, except that the pointer 
moves to an incremented starting position in each row. The starting position pointer increments by linear 
progression, as shown in Figure 5-3:

Figure 5-3.   Triangular Loop

A triangular loop is transformed into a mainly linear based loop, incorporating the offset increment as an 
addition operation. Example 5-11 illustrates the transformation of a triangular loop.

Example 5-11.   Loop transformation - triangular loop

C source code

int table[70][70];
int i, j;
for(i=0; i<70; i++)

for(j=i+3; j<70; j++)
table[i][j] = 0;

Pseudocode before optimization Pseudocode after optimization

i = 0;
L1 j = i

if(j>=70) goto L3
L2 tmp1 = i * 140;

tmp2 = j * 2;
tmp3 = tmp1 + tmp2;
table[tmp3] = 0;
j++;
if(j < 70) goto L2

L3 i++;
if(i<70) goto L1

i = 0;
tmp1 = 0;
Repeat 70 times

j = 1 + 3;
if(j>=70) goto L3
tmp2 = j * 2; 
tmp3 = tmp1 + tmp2; /* offset */
tmp4 = table + tmp3;

/* base + offset */
Repeat (70-j)

*tmp4 = 0;
*tmp4 = tmp4 + 2;

L3 i++;
tmp1 = tmp1 + 140;
 /* next matrix row */
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5.3.2.2   Function inlining
Inlining replaces a call to a function with a copy of the code for the function. In cases where the procedure 
call and return may be more time-consuming than the function itself, function inlining can significantly 
increase the speed of the program. 

Inlining can decrease code size by removing overhead and enabling optimization opportunities.The 
function inlining optimization is particularly effective with cross-file optimization, as the inlining can be 
applied across all available files; thus functions that were inlined every where can be deleted. 

The inlining heuristics were tuned to deal with code size and performance. At the command line, type -Os 
to inline for code size; otherwise, the compiler performs performance inlining. The following table 
illustrates the conditions for performance inlining and for code size inlining.

Assembly code output

loopstart2
L98

cmpgt d0,d2
jf L3
tfr d0,d4 sub d0,d2,d3
doensh3 d3
asll #<2,d4
add d4,d1,d5
move.l d5,r1
adda #>_table,r1,r0
loopstart3

L97
move.l d6,(r0)+
loopend3

L3
add #280,d1,d1
inc d0
loopend2

-Os on -Os off

-Og on code size inlining occurs performance inlining occurs

-Og off limited code size inlining 
occurs (code size inlining 
only occurs for static 
functions with -Os on

performance inlining occurs

Example 5-11.   Loop transformation - triangular loop
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The following example shows how the operation executed by the function Check is incorporated into the 
code itself, removing the call to the function.

You can force or suppress function inlining at specific points in the code, using the pragmas #pragma 
inline and #pragma noinline. Refer to Section 3.4.5, “Pragmas,” on page 3-52, for further details.

5.3.2.3   Common subexpression elimination
Where an expression appears in more than one place in the code and has the same computed value in each 
instance, this optimization replaces the expression itself with its result. Values loaded from memory can be 
included in this process, as well as values based on arithmetic computations. In the example shown below, 
the variable x replaces the repeated subexpression e + f.

5.3.2.4   Loop invariant code
The term “invariant code” refers to an instruction which appears inside a loop, but whose value is not 
directly affected by the execution of the loop. This optimization moves such an instruction to a position 
outside the loop, with the result that the instruction is not repeated each time the loop executes. In 
Example 5-14, the variable z is set to the computed value of 2 * b + 1 before the loop executes, and 
this calculation is removed from the iteration.

Example 5-12.   Function inlining

Before optimization After optimization

int Check(int x);
{

return (x>10);
}
void main()
{

if (Check(y))
a = 5;

}

void main()
{

if (y>10)
a = 5;

}

Example 5-13.   Common subexpression elimination

Before optimization After optimization

d = e + f + g;
y = e + f + z;

x = e + f;
d = x + g;
y = x + z;

Example 5-14.   Loop invariant code motion

Before optimization After optimization

b = c;
for(i=0; i<3; i++)

d[i] = 2 * b + 1;

b = c;
z= 2 * b + 1;
for(i=0; i<3;i++)

d[i] = z;
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5.3.2.5   Constant folding and propagation
This optimization identifies expressions which contain int values known to be constants and calculates 
their value at compilation time. The value of the expression then replaces the expression itself, as shown in 
Example 5-15 below.

Example 5-15.   Constant folding and propagation

Before optimization After optimization

X = 2;
Y = X + 10;
Z = 2 * Y;

X = 2;
Y = 12;
Z = 24;
5-18 SC100 C Compiler



Optimization Types and Functions
5.3.2.6   Jump-to-jump elimination
This optimization combines two jump operations into one, in cases where the code executes a jump to an 
address, and at that address immediately jumps to a different address. 

In Example 5-16, the two jump instructions goto J1; and goto J2; are replaced by a direct jump to J2.

5.3.2.7   Dead code elimination
This optimization removes segments of “dead” code, meaning code that cannot possibly be executed. The 
code may be dead from the start, or it may become dead as a result of other optimizations. For example, the 
code may specify a condition which can never be true. In the example shown below, the variable c is type 
char, which can never have a value greater than 255, and therefore the if condition will never be met.

5.3.2.8   Dead storage/assignment elimination
Dead storage or assignment occurs when a variable is assigned a value, either directly or as a result of an 
expression, and is not used again anywhere in the code, or receives another value before being used. This 
optimization removes any unnecessary instructions and unused memory locations which may result from 
such cases. This redundancy may arise as a result of other optimizations.

In Example 5-18, before optimization the variable a is assigned the value 5, and is not used before it is 
reassigned the value 7. The dead storage/assignment elimination optimization removes the redundant 
instruction a = 5. If the variable a was not used at all after being assigned a value, it would be removed 
completely.

Example 5-16.   Jump-to-jump elimination

Before optimization After optimization

if(x)
...
else

goto J1;

J1:
goto J2;

if(x)
...
else

goto J2;

Example 5-17.   Dead code elimination

Before optimization After optimization

char c;
if c > 300 

a = 1;
else

a = 2;

a = 2;

Example 5-18.   Dead storage/assignment elimination

Before optimization After optimization

a = 5;
.. 
a = 7;

a = 7;
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5.3.3  Target-Specific Optimizations
The Low-Level Transformations (LLT) phase is a separate modular stage of the optimization process 
which implements a number of target-specific optimizations. This phase transforms the linear code 
generated by the target-independent optimization phase into parallel assembly code, which can take 
advantage of the parallel execution units of the SC100 architecture. 

The degree of parallelization that the optimizer is able to achieve is limited by the number and type of 
dependencies within the source code. See Section 5.3.1, “Dependencies and Parallelization,” for a 
summary of these issues. 

Section 5.4, “Guidelines for Using the Optimizer,” provides detailed advice about preparing your source 
code with a view to reducing dependencies and realizing the maximum potential for optimization.

All target-specific optimizations are applied when the Level 2 optimization (option -O2) is selected. 
Target-specific optimizations are not activated at all when either option -O0 or option -O1 is selected.

The major target-specific optimizations are summarized in Table 5-4, and examples of each are given in 
the sections that follow.  

Table 5-4.   Summary of Target-Specific Optimizations

Optimization Description Section Page

Instruction scheduling Executes multiple instructions in the same cycle, fills 
delay slots associated with a branch operation, and 
avoids pipeline restrictions

5.3.3.1 5-22

Target-specific software pipelining Rearranges instructions in a loop to minimize 
dependencies

5.3.3.2 5-23

Conditional execution and 
predication

Transforms a branch into a sequence of conditional 
actions

5.3.3.3 5-26

Speculative execution Moves instructions from conditional to unconditional 
paths

5.3.3.4 5-27

Post-increment detection Combines the functions of incrementing (or 
decrementing) a pointer and accessing the computed 
address into one instruction

5.3.3.5 5-28

Target-specific peephole 
optimization

Merges a sequence of instructions into a single 
instruction

5.3.3.6 5-29

Extract peephole optimization Replaces multiple instructions and cycles with one 
word or one cycle (combines AND instructions)

5.3.3.7 5-30

Multiply strength reduction Replaces integer multiplies by constants with 
combinations of ASRs and ASLLs

5.3.3.8.1 5-32
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The optimizer applies the target-specific optimizations in a predefined sequence, and invokes some of the 
optimizations more than once, as illustrated in Figure 5-4. Each optimization is directly affected by the 
result of the preceding optimization.

Figure 5-4.   Sequence of Target-Specific Transformation Optimizations
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5.3.3.1   Instruction scheduling
The main purpose of this optimization is to execute as many instructions as possible from the same 
instruction stream in the same cycle. The amount of dependency between the instructions limits the extent 
to which this can be achieved.

The instruction scheduling optimization organizes instructions into execution sets wherever it is possible to 
do so, making best use of the Data Arithmetic Units and Address Generation Units provided by the SC100 
architecture.

Example 5-19 illustrates the use of instruction scheduling:

Instruction scheduling serves two further purposes:

• Filling delay slots when branch instructions are executed, as described below

• Rescheduling operations that are not dependent on pipeline restricted instructions, as described in 
Section 5.3.3.1.2, “Avoiding pipeline restrictions,” on page 5-23

5.3.3.1.1   Filling delay slots

A branch instruction requires three cycles to execute if the branch is taken. When a branch executes, the 
prefetch queue is lost, and the cycles used for the other instructions are wasted, since they cannot execute 
until the branch instruction has completed. The wasted cycles are termed delay slots.

The instruction scheduling optimization checks whether other operations can be executed at the same time 
as the branch instruction. This is not possible if there are limiting factors, for example:

• The branch instruction is directly affected by the instructions which precede it.

• There are specific dependencies between the branch and the other instructions.

If there are no limiting factors, the scheduler rearranges the code, in order to use the delay slots efficiently. 
In the following example, the code has been reorganized to enable three instructions to execute during the 
time that the branch requires to complete its operation.

Example 5-19.   Instruction scheduling

Before optimization After optimization

move.l d0,(r0)
inc d0
tfra r3,r0
adda #12,r3
move (r1)+,d1

move.l d0,(r0) inc d0
tfra r3,r0 move (r1)+,d1
adda #12,r3

Example 5-20.   Filling delay slots

Before optimization After optimization

move.l d0,(r0)
inc d0
tfr d5,d2
rts

rtsd
move.l d0,(r0) inc d0 tfr d5,d2

move.1    d0,(r0)      inc    d0    tfr d5, d2
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5.3.3.1.2   Avoiding pipeline restrictions

Certain instructions, for example, a move to an Rn register, are subject to pipeline restrictions. The effect 
of these instructions may not be implemented until two or more cycles after the instruction executes. In 
such cases, an operation which is dependent on the result of such an instruction, and which follows it 
immediately, must wait until the result is available. 

The instruction scheduling optimization rearranges the sequence of such instructions where possible, using 
the cycle(s) which would otherwise be wasted to implement one or more operations that are not dependent 
on the restricted instruction.

In Example 5-21, the clr instruction has been rescheduled, since it can execute before the effect of the 
move.l instruction is implemented, whereas the move.w instruction must wait for the results of the 
move.l operation.

5.3.3.2   Target-specific software pipelining
Software pipelining provides a further level of loop optimization, in addition to the target-independent 
optimizations which operate on loops. 

The software pipelining optimization attempts to rearrange the sequence of instructions inside a loop, in 
order to minimize dependencies between such instructions, and thus increase the level of parallelization. 

For example, a segment of code may consist of three instructions, A, B and C, within a loop which iterates 
4 times. In some cases, the code may be reorganized into a different sequence without affecting its result, 
for example:

1. Instruction A

2. Instructions B, C, A, in a loop which iterates 3 times

3. Instruction B

4. Instruction C

The revised arrangement of the instructions results in fewer dependencies than in the original code.

This optimization is applied only to innermost loops of small or moderate size, which contain no branches 
or function calls within the loop. It is most effective when applied to loops that execute a large number of 
times.

Each iteration of a software pipelined loop may contain instructions from a different iteration of the 
original loop.

Software pipelining increases code size in almost all circumstances. When optimization for size is 
specified, software pipelining is suppressed entirely.

Example 5-21.   Avoiding pipeline restrictions

Before optimization After optimization

move.l d0,(r0)
nop
move.w (r0),dl
clr d0

move.l d0,(r0)
clr d0
move.w (r0),dl
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The following example shows how the software pipelining optimization reduces the number of iterations 
and rearranges instructions both within and outside the loop, thus enabling the maximum number of 
instructions that are not dependent on each other to execute in parallel.

Example 5-22.   Software pipelining - complex FIR

C source code

for (i = 0; i < N; i++)
{

L_tmpr = L_mac (L_tmpr, sample[i].r, coeff[N - i - 1].r);
L_tmpr = L_msu (L_tmpr, sample[i].i, coeff[N - i - 1].i);

L_tmpi = L_mac (L_tmpi, sample[i].i, coeff[N - i - 1].r);
L_tmpi = L_mac (L_tmpi, sample[i].r, coeff[N - i - 1].i);

}

Before optimization After optimization

loop n times:
move.w (r0)+,d4
move.w (r1)-,d3
mac d3,d4,d5
move.w (r0)+,d1
move.w (r1)-,d2
mac -d1,d2,d5
mac d3,d1,d6
mac d2,d4,d6

/* Prolog */
move.w (r0)+,d4 move.w (r1)-,d3
mac d3,d4,d5 move.w (r0)+,d1  move.w(r1)-,d2

loop n-1 times:
 /*start loop*/

[
mac d3,d1,d6 mac -d1,d2,d5      

    move.w (r0)+,d4 move.w (r1)-,d3
]
[

    mac d3,d4,d5  mac d2,d4,d6    
    move.w (r0)+,d1 move.w (r1)-,d2   

]
/*endloop*/
/* Epilog */
mac d3,d1,d6 mac -d1,d2,d5
mac d2,d4,d6
5-24 SC100 C Compiler



Optimization Types and Functions
In the following example, the loop iterates only 8 times, instead of the 10 in the original code, since two 
iterations have been unrolled. The loop executes in a single cycle. During this cycle the loop:

• Loads a value from iteration i+2

• Multiplies the value from iteration i+1

• Stores the result value from iteration i

Example 5-23.   Software pipelining - vector multiplication by a constant

C source code

for (i=0; i<10; i++)
    b[i] = mult(a[i], 0x4000);

Assembly code after optimization

doensh3  #<8 ; Pipelining loop twice
move.l   #_a,r1

    move.f   #16384,d1
    move.f   (r1)+,d0 move.l #_b,r0
    mpy      d0,d1,d2  move.f (r1)+,d0
    loopstart3

L93
   [
    moves.f  d2,(r0)+   
    mpy      d0,d1,d2   
    move.f   (r1)+,d0   
   ]
    loopend3

L92
    moves.f  d2,(r0)+  mpy d0,d1,d2  
    moves.f  d2,(r0)+
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5.3.3.3   Conditional execution and predication
The conditional execution and predication optimization simplifies small conditional structures and 
transforms the branch into one sequence.

An example of this transformation is shown in Example 5-24, in which two branches are removed.

An additional advantage of this optimization is that it increases the size of the basic blocks in the optimized 
code segment, making further optimization more effective. 

It is important to note, however, that the conditional execution optimization adds one word for each branch 
that it replaces (ift and iff in the above example). As a result, the impact on the size of the program can 
be considerable. Generally, this optimization is only activated for small structures where the number of 
instructions added is less or equal to the number of instructions saved. 

Example 5-24.   Conditional execution and predication 

C source code

If(a < 0){
  lower_bound = 0;
  i = 0;
}else
  lower_bound = a;

Generated code before optimization Generated code after optimization

move.w a,d0
tstgt d0
bf L_False
clr d2
clr d3
bra L_AfterIf

L_False    
tfr d0,d2

L_AfterIf   
move.w d2,lower_bound

move.w a,d0
tstgt d0
ift  clr  d2  clr d3
iff tfr d0,d2
move.w d2,lower_bound
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5.3.3.4   Speculative execution
The speculative execution optimization moves instructions from conditional to unconditional paths, in 
order to fill execution slots that would not otherwise be used. 

If an empty execution slot is available when a condition statement is encountered, the instructions are 
rearranged so that the conditional instructions execute unconditionally in previous cycles to the condition. 
If the condition is true and the ift instruction has been executed, or if the condition is false and the iff 
instruction has been executed, a cycle has been gained. If the condition result does not match the moved 
instruction, the appropriate instruction is executed as normal, with no loss of cycles. 

Example 5-24 shows an example of this transformation. In this example, the first iff instruction is moved 
so that it executes in the same cycle as the cmpgt instruction. If the result of the conditional operation is 
true, the ift instruction is executed in the next cycle. If the result is false, the instruction that was 
previously the second iff is executed, with the result that only one cycle is used instead of two. 

This optimization can be implemented successfully for one or more instructions if:

• Sufficient slots are available.

• There are no dependencies between the instruction in the conditional path and other instructions.

• The conditional instruction does not have any specific side effects.

Example 5-25.   Speculative execution

C source code

If(var > 5)
  x[3] = a;
else
  y = b;

Generated code before optimization Generated code after optimization

cmpgt #5,d1
nop
iff move.l x+6,r0
iff move.l d3,_y
ift move.l d2,(r0)

move.l x+6,r0 cmpgt #5,d1
nop
iff move.l d3,_y
ift move.l d2,(r0)
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5.3.3.5   Post-increment detection
This optimization exploits the features of the SC100 architecture, and increases code efficiency in terms of 
both size and speed. It identifies the instructions which use arithmetic functions to modify pointers, and 
which access the computed addresses, and replaces them with special post-increment or post-decrement 
address mode instructions which combine both functions.

The increment (or decrement) factor is not limited to the values 2 or 4, since any one of the four index 
registers (n0 through n3) may be used, as illustrated in Example 5-26.

Example 5-26.   Post-increment detection

Generated code before optimization Generated code after optimization

L150    
move.l  #_L_R,r4
move.l  #_CGUpdates,r5
doen3   #<8
dosetup3        L183
loopstart3      

L183    
move.l  (r4),d0
move.l  (r5),d1
mac     d0,d1,d2                
adda    #<4,r4
adda    #<12,r5
loopend3        

L152 

L150
doensh3 #<7      ;Pipelining loop once
move.w #3,n3     
move.l #_L_R,r4 
move.l #_CGUpdates,r5
move.l (r4)+,d0  
move.l (r5)+n3,d1
loopstart3         

L183
   [
    mac d0,d1,d2   
    move.l (r5)+n3,d1 
    move.l   (r4)+,d0  
   ]
    loopend3           

L152
    mac      d0,d1,d2 
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5.3.3.6   Target-specific peephole optimization
The target-specific peephole optimization identifies sequences of instructions that can be merged into a 
single instruction, and implements this transformation, as shown in Example 5-27. 

Example 5-28 illustrates a combination of pipelining and peephole optimizations. After pipelining, the 
final mac instruction, which has been moved outside the loop, is merged with the rnd instruction to form a 
macr instruction.

Example 5-27.   Target-specific peephole optimization

Generated code before optimization Generated code after optimization

deca r0
move.w #33,d0
tstgea.l r0

decgea r0
move.w #33,d0

Example 5-28.   Combined pipelining and peephole optimizations

Generated code before optimization Generated code after optimization

doen #9
dosetup0 L1

loopstart0
L1

move.w (r0)+,d3
move.w (r1)+,d2
mac d2,d3,d7

loopend0

rnd d7

doen #8  ;Pipelining loop once
dosetup0 L1
move.w  (r0)+,d3
move.w  (r1)+,d2
loopstart0

L1
mac d2,d3,d7 
move.w (r1)+,d2
move.w (r0)+,d3
loopend0

macr d2,d3,d7
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5.3.3.7   Extract peephole optimization
Extract peephole optimization replaces ASR and AND operations with EXTRACT and ASLL operations. 
The compiler only performs this optimization when the AND operation has one constant operand and that 
constant operand contains only one string of contiguous ones.

The EXTRACT instruction performs an implicit ASR that places the resulting bits of interest into the LSB 
positions. Therefore, the compiler may add an ASLL after the EXTRACT/EXTRACTU instruction so that 
the bits end up in the correct position, as illustrated in example 5-30. The EXTRACT/EXTRACTU 
instruction can also encompass a ASR that may be present around the original AND instruction, as 
illustrated in example 5-31.

The optimization needs to use the correct extract instruction, EXTRACT or EXTRACTU. Normally, the 
EXTRACTU instruction is used. The EXTRACT instruction is used when the original ASR instruction 
may cause the MSB positions to be set to one (assuming the sign bit is set to 1).

The extract peephole optimization is intelligent and aggressive, cognizant of the code size and cycle 
implications of the transformation; therefore, the optimizer only applies this optimization when it 
determines that a benefit is possible. Examples 5-29, 5-30, and 5-31 illustrate when extract peephole 
optimization is beneficial. 

Example 5-29.   When the AND constant does not fit in lower or upper 16 bits

Generated code before optimization

     ;;total words = 4 and total cycles = 2

     move.l     #$18000,d2       ; 3-word instruction
     and        d0,d2            ; 1-word instruction

Generated code after optimization

     ;;total words = 3 and total cycles = 2

     extractu   #<2,#<15,d0,d2   ; 2-word instruction
     asll       #<15,d2          ; 1-word instruction
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Example 5-30.   ASR followed by an AND (no ASLL necessary)

Example 5-31.   Using an EXTRACT instead of an EXTRACTU

Generated code before optimization

     ;;total words = 3 and total cycles = 2

     asrr        #<13,d1              ; 1-word instruction
     and         #$e000,d1, d1        ; 2-word instruction

Generated code after optimization

     ;;total words = 2 and total cycles = 1
     extractu   #<3,#<13,d1,d1   ; 2-word instruction

Generated code before optimization

     ;;total words = 3 and total cycles = 2

     and         #$f0000000,d1, d1    ; 2-word instruction
     asrr        #<28,d1              ; 1-word instruction

Generated code after optimization

     ;;total words = 2 and total cycles = 1

     extract  #<4,#<28,d1,d1    ; 2-word instruction
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5.3.3.8   Target-Specific Strength Reduction
 Strength reduction increases the effectiveness of the code by transforming operations that are “expensive” 
in terms of resources, into less expensive, linear operations. For example, addition and subtraction are 
linear functions that require less operation cycles than multiplication and division. 

When an address calculation that contains multiplication is replaced by one containing addition, the 
amount of resources required by the code is significantly reduced, since addition can be implemented using 
the complex addressing mode of the Address Generation Unit (AGU). 

5.3.3.8.1   Multiply Strength Reduction

Multiply strength reduction is an enhanced strength reduction for multiplication operations. It occurs when 
one of the operands in an instruction is a constant. During multiply strength reduction, the compiler 
determines which combinations of shifts, by power of two, and adds/subtracts can create the equivalent to 
the constant multiplication. This is an important optimization because it can take seven assembly 
instructions to implement 32-bit multiplication of integers in SC100 architecture. 
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5.3.3.9   Prefix grouping
Instruction grouping is applied by the optimizer wherever possible, in order to make best use of the 
available multiple execution units. In addition to “natural” grouping of instructions, which increases 
efficiency and does not increase code size, the optimizer can implement prefix grouping. Prefix grouping is 
a mechanism whereby an additional word is introduced into the code in order to force more than one 
instruction to execute in the same cycle. 

Prefix grouping improves performance in terms of speed, but increases the size of the code. The optimizer 
activates prefix grouping on the entire code.

5.3.4  Space Optimizations
When you select the -Os option, the optimizer aims to produce code that occupies as little memory space 
as possible for the given optimization level. In certain cases, the reduced memory space may be at the 
expense of program speed.

The compiler executes all optimizations associated with the specified optimization level, except for those 
that increase the code size, as noted below:

• For target-independent optimizations, -Os specifies the use of inlining heuristics.

• For target-specific optimizations, -Os does the following:

— Disables software pipelining.

— Omits conditional execution.

— Uses only serial grouping when encoding assembly instructions, since code size is increased 
when prefixes are added, as described in Section 5.3.3.9, “Prefix grouping.” 

You can use the -Os option in combination with any other optimization option except -O0. If no 
optimization level is specified with -Os, Level 2 optimization (-O2 option) is selected by default.

The command line shown in Example 5-32 invokes the optimizer with the default Level 2 optimizations. 
All target-independent and target-specific optimizations, except those noted above, are applied across all 
modules in the application.

Example 5-32.   Invoking the optimizer for space optimization

scc -Os -Og -o file1.eld file1.c file2.c
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5.3.4.1   Code Sinking Optimization
Code sinking is a space optimization that downsizes replicated code by sinking duplicated operations. It 
creates basic blocks when necessary, enabling the compiler to apply the optimization more often. 

Code sinking optimization is only executed when optimizing for code size using the -Os option.

Two important aspects of code sinking optimization are:

• Code sinking optimization makes educated guesses about the code size implications of the 
transformation. It only performs the optimization when it believes that a code-size reduction is 
likely. 

• Code sinking optimization alters the control flow of the program in order to enable code sinking. 
This alteration allows code from a subset of a join’s preceding blocks to be sunk. This is only 
performed when there is likely to be a positive result.

Example 5-34 illustrates code before and after code sinking optimization occurs.

Example 5-33.   Code sinking optimization

Generated code before optimization Generated code after optimization

   if( index > 0x37 )
   {
      array[ index ]= array[ index - 0x37 ];
      array[ index - 0x37 ]=tmp;
   }
   else
   {
      array[ index ]= array[ index + 0x37 ];
      array[ index + 0x37 ]=tmp;
   }

   if( index > 0x37 )
   {
      temp_index = index - 0x37;
   }
   else
   {
      temp_index = index + 0x37;
   }
   array[ index ]= array[ temp_index ];
   array[ temp_index ]=tmp;
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5.3.5  Cross-File Optimizations
Cross-file optimization produces the most effective form of optimization, since optimizations are applied 
across all the files in the application. You can specify the  -Og option in the command line together with 
any of the optimization options except the -O0 option. The -Og option is most effective when used with 
the default level -O2.

In addition to implementing the selected level of optimization across all the files, cross-file optimization 
also applies two specific optimizations:

• Function inlining across multiple files, which applies the optimization described in Section 5.3.2.2, 
“Function inlining,” to the whole program. As with function inlining for individual files, this may 
increase the size of the code, but can considerably increase execution speed. If you specify -Os, the 
code size may actually decrease.

• Optimization of access to global and static variables.

5.3.5.1   Rules for using Cross-file Optimization
To receive optimal results using cross-file optimization, follow these rules:

1. You must compile the entire application together.

2. You can only link the Standard C library that is shipped with the Compiler.

3. Assembly functions can only call other assembly functions and library functions.

5.4   Guidelines for Using the Optimizer
The optimizer produces the best possible results when the source code is written in a simple and 
straightforward manner. Complex structures and algorithms should be avoided wherever possible, since 
these can reduce the effectiveness of many of the optimizations.

During the various optimization phases, the compiler attempts to convert all the structures in the code into 
a form that is independent of the style of an individual user, and that can be processed efficiently by the 
individual optimizations. By following the basic rules of clarity and simplicity when writing your code, 
you help the optimizer to retrieve the specific information it needs, and to apply the maximum amount of 
optimization. 

For example, when accessing arrays you should use simple access instructions wherever possible, and 
avoid using complex access instructions which use pointers, as shown in Example 5-34:

Section 5.4.3, “General Hints,” provides further general guidelines for writing simple code structures to 
assist optimization.

You can further enhance the results of the optimization by applying two specific techniques that help the 
optimizer take full advantage of the multiple execution units of the SC100 architecture:

Example 5-34.   Simple and complex array accesses

a) Simple array access (recommended) b) Complex array access (not recommended)

a[i] p = &a[0]
*p++;
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• Partial summation, which reduces dependencies in a loop, enabling multiple iterations of a loop in 
parallel

• Multisample processing, a programming technique which processes multiple samples 
simultaneously

These techniques are described in the sections that follow.
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5.4.1  Partial Summation Techniques
One of the optimizer’s major functions is to produce parallelized code that fully utilizes the available 
number of multiply-accumulate (MAC) units. The number of MAC units that can be used in an execution 
set, meaning the number of instructions executed in the same cycle, is usually limited by the degree of 
dependency within the code.

The partial summation programming technique helps you reduce the dependencies in the loops in your 
source code, in such a way that the iterations can execute in parallel. By structuring your source code using 
partial summation techniques wherever possible, you enable the optimizer to further reduce dependencies 
and increase parallelization.

In Example 5-35, the inner loop can use only a single MAC per cycle, because of the inner dependency 
within the algorithm. The same output code is generated when compiling for a single, dual, or quad MAC 
StarCore system. 

Example 5-35.   MAC usage limited by dependency in loop

Source code

 void Iir(short Input[], short Coef[], short FiltOut[])
{
  long L_Sum = 0;  short int Stage, Smp;  int LoopCount;

  FiltOut[0] = Input[0];
  for (Smp = 1; Smp < S_LEN; Smp++)
  {
    L_Sum = LPC_ROUND;   LoopCount = (Smp<NP ? Smp : NP );

    for (Stage = 0; Stage < LoopCount; Stage++)
       L_Sum = L_msu(L_Sum, FiltOut[Smp - Stage -1],Coef[Stage]);

    L_Sum = L_shl(L_Sum, ASHIFT);
    L_Sum = L_msu(L_Sum, Input[Smp], 0x8000);
    FiltOut[Smp] = extract_h(L_Sum);
  }
}

Generated code

doensh1 d0    
move.f r2)+,d0 move.f (r0)-,d1
loopstart1

PL001
mac -d0,d1,d2 move.f (r0)-,d1 move.f (r2)+,d0
loopend1

PL000
mac -d0,d1,d2
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Example 5-36 illustrates how you can use partial summation to split the inner loop in the above example to 
enable two parallel iterations. The loop iterates half the number of times. The sum is accumulated using 
two variables, which are combined outside the loop. 

The same technique can be used for compiling with a quad MAC system, by splitting the loop into four 
iterations, using four variables and one quarter the number of iterations. 

It is important to note that partial summation is not suitable for algorithms with bit-exact requirements. 
This technique changes the order of the calculation, and may affect the value of the result in cases where 
statements must be executed in the exact order specified.

In certain algorithms the effectiveness of the partial summation technique may be limited because of 
alignment restrictions. For example, the move.2f instruction, which is required for partial summation, 
must be used on a long word boundary. 

Example 5-36.   Partial summation for dual MAC usage

Source code

for (Stage = 0; Stage < (LoopCount>>1); Stage++)
{

L_Sum = L_msu(L_Sum, FiltOut[Smp - 2*Stage -1], Coef[2*Stage]);
L_Sum1 = L_msu(L_Sum1, FiltOut[Smp - 2*Stage -2], Coef[2*Stage+1]);

}

L_Sum = L_shl(L_Sum+L_Sum1, ASHIFT);
L_Sum = L_msu(L_Sum, Input[Smp], 0x8000);

Generated code

doen  sh1 d0
move.2f (r2)+,d0d1 move.2f (r0)-,d6d7
loopstart0

PL001
   [

mac -d0,d6,d2
mac -d1,d7,d5
move.2f (r0)-,d6:d7
move.2f (r2)+,d0:d1

   ]
loopend0

PL000
mac -d0,d6,d2 mac -d1,d7,d5
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In Example 5-36, this restriction is satisfied, and the partial summation technique can be used successfully. 
Example 5-37 shows an algorithm for which partial summation cannot be used. This is because the second 
iteration produces an odd value for the variable i, with the result that the move.2f instruction violates the 
alignment requirement.

Example 5-37.   Alignment restrictions in algorithms

for (i = 0; i < DataBlockSize; i++) 
{                                                                                                                                           
   Delay[(DataBlockSize-i)] = DataIn[i];  
   sum1 = 0;  sum2 = 0;
   for (j = 0; j < FirSize/2 ; j++)
   {
       sum = L_mac(sum,Coef[2*j],Delay[2*j-i]);
       sum = L_mac(sum,Coef[2*j+1],Delay[2*j-i+1]);
   }
   Result = round(sum);
}

The multisample techniques described in the following section can help you write source code which 
enables the optimizer to take further advantage of multiple execution units. You can apply multisample 
techniques even if you cannot use partial summation for certain algorithms because of alignment 
restrictions or bit-exact requirements.
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5.4.2  Multisample Techniques
To obtain high performance, a pipelining technique called “multisample” programming is used to process 
multiple samples simultaneously. The multisample programming techniques enable you to obtain high 
performance by taking full advantage of the SC100 multiple-ALU architecture.

This following terminology is used throughout this section:

• Generic Kernel: The minimum required operations of the algorithm. The generic kernel is the 
theoretical minimum size of the kernel without considering implementation constraints.

• Basic Kernel: The inner loop of a DSP algorithm. This may contain several replications of the 
generic kernel or additional code for pipelining. The basic kernel is actually implemented on the 
DSP and is subject to implementation constraints.

• Operand: A value used as an input to an ALU.

• Delays: Values stored as a delay line for referencing past values.

• Iteration: The complete execution of a basic kernel.

• Loop pass: The execution of the instructions within the basic kernel. Many loop passes may be 
needed to complete a single iteration of the kernel.

To process several samples simultaneously, operands (both coefficients and variables) are reused within 
the kernel. Although a coefficient or operand is loaded once from memory, multiple ALUs may use the 
value, or the value may be used in a later step of the kernel. 

Figure 5-5 illustrates the structure of a single sample and multisample algorithm.

Figure 5-5.   Single Sample and Multisample Kernels

In a single sample algorithm (Figure 5-5 A), samples are processed by the algorithm serially. The kernel 
processes a single input sample and generates a single output sample. For an algorithm such as an FIR, 
samples are input to the FIR kernel one at a time. The FIR kernel generates a single output for each input 
sample. Blocks of samples are processed using loops and executing the FIR kernel several times.

In contrast, the multisample algorithm (Figure 5-5 B) takes multiple samples at the input in parallel and 
generates multiple samples at the output simultaneously. The multisample algorithm operates on data in 
small blocks. Operands and coefficients are held in registers, and applied to both samples simultaneously, 
resulting in fewer memory accesses. 

Multisample algorithms are ideal for block processing algorithms where data is buffered and processed in 
groups (such as speech coders). Figure 5-5 B shows two samples being processed simultaneously. 
However, the number of simultaneous samples depends on the processor architecture and type of 
algorithm.
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Most DSP algorithms have a multiply-accumulate (MAC) at their core. On a load/store machine, the 
register file is the source/destination of operands to/from memory. For the ALU, the register file is the 
source/destination of operands. On a single sample, single ALU algorithm, the memory bandwidth is 
typically equal to the operand bandwidth, as shown in Figure 5-6.

Figure 5-6.   Single ALU Operand and Memory Bandwidth

When increasing the number of ALUs to four, the bandwidth increases as shown in Figure 5-7.

Figure 5-7.   Quad ALU Operand and Memory Bandwidth

Quadrupling the number of ALUs quadruples the operand bandwidth. If there is one address generator per 
operand, this results in eight address generators. This is undesirable because it requires an 8 port memory 
and a significant amount of address generation hardware. 

The SC140 DSP core solves this problem by providing up to a quad operand load/store over a single bus. 
With two quad operand loads, eight operands can be loaded using two address generators. 

Although quad operand loading provides the proper memory bandwidth, some algorithms have special 
memory alignment requirements. These alignment requirements make it difficult to use multiple operand 
load/stores.

Multisample algorithms provide a solution for implementing algorithms with memory alignment 
requirements. By reusing previously loaded values, the number of operands loaded from memory is 
reduced, which relaxes the alignment constraints. 
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Both techniques for increasing operand bandwidth, by using wider data buses or by reusing operands, are 
shown in Figure 5-8.

Figure 5-8.   Options for Increasing Operand Bandwidth

To introduce the multisample technique, four example DSP kernels are written in multisample form. The 
DSP kernels presented are direct form FIR filter, direct form IIR filter, correlation and biquad filter.

5.4.2.1   Multisample implementation issues
When implementing a DSP algorithm such as an FIR filter, trade-offs are made between the number of 
samples processed and the number of ALUs as shown in Figure 5-9.

Figure 5-9.   Number of Samples and ALUs for Implementing DSP Algorithms

As the kernel computes more samples simultaneously, the number of memory loads decreases because 
data and coefficient values are being reused. However, to obtain this reuse, more intermediate results are 
required, which typically requires more registers in the processor architecture. 

If the operand memory requires wait states, this technique improves the speed of the algorithm. If the 
operand memory is full speed, then the algorithm does not execute any faster, but may reduce power 
consumption because the number of memory accesses has been reduced.

By using more ALUs, it is theoretically possible to compute an algorithm faster. Moving across the row 
theoretically applies 1, 2 or 4 ALUs to the algorithm. To apply multiple ALUs, some degree of parallelism 
is required in the algorithm to partition the computations.
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Although computing a single sample with multiple ALUs is theoretically possible, limitations in the DSP 
hardware may not allow this style of algorithm to be implemented. In particular, most processors typically 
require operands to be aligned in memory and multiple operand load/stores to be aligned. 

For example, a double operand load requires an even address and a quad operand load requires a double 
even address. These types of restrictions are typical to reduce the complexity of the address generation 
hardware (particularly for modulo addressing). 

Restricting the boundaries of the load makes implementing some algorithms very difficult or impossible. 
This is easiest to explain by way of example. Consider a series of (aligned) quad operand loads from 
memory, as shown in Figure 5-10.

Figure 5-10.   Quad Coefficient Loading from Memory

The loads in Figure 5-10 do not have a problem with alignment because loads occur from double even 
addresses.

Alignment problems typically occur with algorithms implementing delay lines in memory. These 
algorithms delete the oldest delay and replace it with the newest sample. This is typically done by using 
modulo addressing and “backing up” the pointer after the sample is processed. This leads to an addressing 
alignment problem as shown in Figure 5-11.

Figure 5-11.   Misalignment when Loading Quad Operands

On the first iteration of the kernel, quad data values are loaded starting from a double even address. This 
does not create an alignment problem. However, at the end of the first iteration, the pointer is backed up by 
one to delete the oldest sample. On the next iteration, the pointer is not at a double even address and the 
quad data load is not aligned.
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A solution to the alignment problem is to reduce the number of operands moved on each data bus. This 
relaxes the alignment issue. However, in order to maintain the same operand bandwidth, each loaded 
operand must be used multiple times. This is a situation where multisample processing is useful. 

As the number of samples per iteration increases, more operands are reused and the number of moves per 
sample is reduced. With fewer moves per sample, the number of memory loads is decreased allowing 
fewer operands per bus. Fewer operands per bus allows the data to be loaded with fewer restrictions on 
alignment.

5.4.2.2   Implementation example
The FIR_A4S4 Quad ALU, quad sample, is the highest performance implementation on a quad ALU 
SC100 DSP.

To further increase the performance of the FIR filter, four ALUs may be used. To avoid misalignment, four 
samples are processed simultaneously. The quad ALU, quad sample FIR data flow is shown in 
Figure 5-12.

Figure 5-12.   Quad ALU, Quad Sample FIR Filter Data Flow

Input samples are grouped together four at a time. Coefficients and delays are loaded and applied to all 
four input values to compute four output values. By using four ALUs, the execution time of the filter is 
only one quarter the execution time of a single ALU filter.

4 ALUs

x(
n) y(
n)

C
oe

ffi
ci

en
ts

P
as

t I
np

ut
 S

am
pl

es

x(
n+

1)

y(
n+

1)

x(
n+

2)

y(
n+

2)

x(
n+

3)

y(
n+

3)

x(
n+

4)

y(
n+

4)

C
oe

ffi
ci

en
ts

P
as

t I
np

ut
 S

am
pl

es

x(
n+

5)

y(
n+

5)

x(
n+

6)

y(
n+

6)

x(
n+

7)

y(
n+

7)

4 ALUs
5-44 SC100 C Compiler



Guidelines for Using the Optimizer
To develop the FIR filter equations for processing four samples simultaneously, the equations for the 
current sample y(n) and the next three output samples y(n+1), y(n+2) and y(n+3) are as shown in 
Figure 5-13.

Figure 5-13.   FIR Filter Equations for Four Samples

The generic kernel has the following characteristics:

• Four parallel MACs.

• One coefficient is loaded and used by all four MACs in the same generic kernel.

• One delay value is loaded, used by the generic kernel and saved for the next three generic kernels.

• Three delays are reused from the previous generic kernel.

To develop the structure of the quad ALU kernel, the filter operations are written in parallel and the loads 
are moved ahead of where they are first used. This creates the generic kernel shown in Figure 5-14.

Figure 5-14.   Generic Kernel For Quad ALU FIR

y(n) = x(n) C0 + x(n-1) C1 + x(n-2) C2 + x(n-3) C3 + x(n-4) C4 + x(n-5) C5 + x(n-6) C6 + x(n-7) C7

y(n+1) = x(n+1) C0 + x(n) C1 + x(n-1) C2 + x(n-2) C3 + x(n-3) C4 + x(n-4) C5 + x(n-5) C6 + x(n-6) C7

y(n+2) = x(n+2) C0 + x(n+1) C1 + x(n) C2 + x(n-1) C3 + x(n-2) C4 + x(n-3) C5 + x(n-4) C6 + x(n-5) C7

y(n+3) = x(n+3) C0 + x(n+2) C1 + x(n+1) C2 + x(n) C3 + x(n-1) C4 + x(n-2) C5 + x(n-3) C6 + x(n-4) C7

Generic Kernel

load x(n+3)
load x(n+2)
load x(n+1)

load C0, load x(n)
load C1, load x(n-1)
load C2, load x(n-2)
load C3, load x(n-3)
load C4, load x(n-4)
load C5, load x(n-5)
load C6, load x(n-6)
load C7, load x(n-7)

y(n) = 0
y(n) += C0*x(n)
y(n) += C1*x(n-1)
y(n) += C2*x(n-2)
y(n) += C3*x(n-3)
y(n) += C4*x(n-4)
y(n) += C5*x(n-5)
y(n) += C6*x(n-6)
y(n) += C7*x(n-7)

y(n+1) = 0
y(n+1) += C0*x(n+1)
y(n+1) += C1*x(n)
y(n+1) += C2*x(n-1)
y(n+1) += C3*x(n-2)
y(n+1) += C4*x(n-3)
y(n+1) += C5*x(n-4)
y(n+1) += C6*x(n-5)
y(n+1) += C7*x(n-6)

y(n+2) = 0
y(n+2) += C0*x(n+2)
y(n+2) += C1*x(n+1)
y(n+2) += C2*x(n)
y(n+2) += C3*x(n-1)
y(n+2) += C4*x(n-2)
y(n+2) += C5*x(n-3)
y(n+2) += C6*x(n-4)
y(n+2) += C7*x(n-5)

y(n+3) = 0
y(n+3) += C0*x(n+3)
y(n+3) += C1*x(n+2)
y(n+3) += C2*x(n+1)
y(n+3) += C3*x(n)
y(n+3) += C4*x(n-1)
y(n+3) += C5*x(n-2)
y(n+3) += C6*x(n-3)
y(n+3) += C7*x(n-4)

Generic Kernel
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The generic kernel requires four MACs and two parallel loads. Example 5-38 illustrates how the kernel in 
Figure 5-14 is implemented in a single instruction.

Example 5-38.   Single instruction quad ALU generic filter kernel

To provide delay reuse, the delays are copied by using temporary variables D1, D2, D3 and D4 as a delay 
line. This imposes a requirement on the kernel to perform two MACs and five move operations (two loads 
and three copies) in a single instruction.

Example 5-39 contains an example of C simulation code which implements the generic kernel shown in 
Figure 5-14 on page 5-45.

Example 5-39.   FIR_A4S4 quad ALU, quad sample C simulation code
.

#include <prototype.h>
#include <stdio.h>

#define DataBlockSize 40 // size of data block to process
#define FirSize  8 // number of coefficients in FIR

Word16 DataIn[DataBlockSize] = {
    328, 9830, 8192, -6553, -3277, 3277, 3277, -6553, -9830, 4915,
    8192, -6553, 328, 9830, 4915, -6553, -3277, 3277, 3277, -9830,
    4915, -3277, -9830, 8192, -6553, 328, 9830, -6553, 3277, 3277,
    3277, 328, 9830, 4915, -3277, -9830, 8192, -6553, -6553, 3277
};

Word16 Coef[FirSize] = {
    3277, 6553, -9830, -6553, -4915, 3277, 8192, -6553
};
Word16 Delay[FirSize+3];

#define IncMod(a) (a=((a+1)%(FirSize+3)))
#define DecMod(a) (a=((a+FirSize+2)%(FirSize+3)))

int main()
{

int DelayPtr;
Word32 sum1,sum2,sum3,sum4;
Word16 D1,D2,D3,D4;
int i,j;

DelayPtr = 0;// init delay ptr

for (i = 0; i < DataBlockSize; i += 4) {// do 4 samples at a time

Delay[DelayPtr] = DataIn[i];   DecMod(DelayPtr);
Delay[DelayPtr] = DataIn[i+1]; DecMod(DelayPtr);
Delay[DelayPtr] = DataIn[i+2]; DecMod(DelayPtr);

y(n) += C * D1 y(n+1) += C * D2 y(n+2) += C * D3 y(n+3) += C * D4
Load C, Copy D3 to D4, Copy D2 to D3, Copy D1 to D2, Load D1
5-46 SC100 C Compiler



Guidelines for Using the Optimizer
Delay[DelayPtr] = DataIn[i+3]; 

sum1 = 0; // init sum to zero
sum2 = 0; // init sum to zero
sum3 = 0; // init sum to zero
sum4 = 0; // init sum to zero
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 D4 = Delay[DelayPtr];    IncMod(DelayPtr);
                D3 = Delay[DelayPtr];    IncMod(DelayPtr);
                D2 = Delay[DelayPtr];    IncMod(DelayPtr);

for (j = 0; j < FirSize / 4 ; j++) {// evaluate FIR
    D1 = Delay[DelayPtr]; // get delay
    IncMod(DelayPtr);

                    sum1 = L_mac ( sum1, Coef[4*j], D1 );
                    sum2 = L_mac ( sum2, Coef[4*j], D2 );
                    sum3 = L_mac ( sum3, Coef[4*j], D3 );
                    sum4 = L_mac ( sum4, Coef[4*j], D4 );

    D4 = Delay[DelayPtr]; // get delay
    IncMod(DelayPtr);

                    sum1 = L_mac ( sum1, Coef[4*j+1], D4 );
                    sum2 = L_mac ( sum2, Coef[4*j+1], D1 );
                    sum3 = L_mac ( sum3, Coef[4*j+1], D2 );
                    sum4 = L_mac ( sum4, Coef[4*j+1], D3 );

    D3 = Delay[DelayPtr]; // get next delay
    IncMod(DelayPtr);

                    sum1 = L_mac ( sum1, Coef[4*j+2], D3 );
                    sum2 = L_mac ( sum2, Coef[4*j+2], D4 );
                    sum3 = L_mac ( sum3, Coef[4*j+2], D1 );
                    sum4 = L_mac ( sum4, Coef[4*j+2], D2 );

    D2 = Delay[DelayPtr]; // get next delay
    IncMod(DelayPtr);

                    sum1 = L_mac ( sum1, Coef[4*j+3], D2 );
                    sum2 = L_mac ( sum2, Coef[4*j+3], D3 );
                    sum3 = L_mac ( sum3, Coef[4*j+3], D4 );
                    sum4 = L_mac ( sum4, Coef[4*j+3], D1 );

}
DecMod(DelayPtr);

printf("Index: %d, output: %d\n",i,round(sum1));
printf("Index: %d, output: %d\n",i+1,round(sum2));
printf("Index: %d, output: %d\n",i+2,round(sum3));
printf("Index: %d, output: %d\n",i+3,round(sum4));
}

}
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5.4.3  General Hints
In addition to the specific techniques described in the previous sections, there are a number of general 
guidelines that you should follow when writing source code, in order to assist the optimizer to produce the 
most efficient results. These guidelines are described in the sections that follow.

5.4.3.1   Software pipelining
The optimizer implements sophisticated levels of software pipelining, saving you the need to introduce 
software pipelining into your source code. It is important that you do not include any manual form of 
software pipelining into your source code, as this can conflict with the algorithms used by the optimizer, 
resulting ultimately in less efficient optimization.

Example 5-40 shows two forms of source code for the same loop. The first version contains no pipelining, 
and is the recommended source code form. This will generate more efficient and smaller code than the 
second version, which pipelines the first iteration at the C level outside the loop. The type of manual 
pipelining shown in the second version should be avoided.

Example 5-40.   Avoiding software pipelining in source code

1. No pipelining (recommended)

L_R = 0;
for (J = 0; J < S_LEN; J++)

L_R = L_mac(L_R,WBasisVecs[J + (I * S_LEN)], WInput[J]);

2. Manual pipelining (not recommended)

L_R = L_mult(WBasisVecs[I * S_LEN], WInput[0]);
for (J = 1; J < S_LEN; J++)

L_R = L_mac(L_R,WBasisVecs[J + (I * S_LEN)], WInput[ J]);

5.4.3.2   Passing and returning large structs
Instead of passing and returning large structs using their value, use pointers to large structs wherever 
possible.

5.4.3.3   Arithmetic operations
Whenever you can, use constants instead of variables for shift, division, or remainder operations.

5.4.3.4   Local variables
Any local variable that you specify should be initialized before it is used.
SC100 C Compiler 5-49



Optimization Techniques and Hints
5.4.3.5   Resource limitations
The SC100 architecture provides a total of 16 Dn registers and 16 Rn registers. If the number of active 
variables is greater than the number that the registers can accommodate, the compiler maps the extra 
variables to memory, resulting in less efficient code.

For best results, you should take account of these physical limitations when writing your source code. For 
example, when preparing a set of instructions to execute in one cycle, remember that there is a restriction 
on the number of operands that can be used in a single cycle.

5.5   Optimizer Assumptions
The optimizer uses the information passed to it by the compiler, in order to ensure that the optimizations 
applied during the various optimization stages do not affect the original accuracy of the program.

At the time that the compiler accumulates this information, it assumes that only two types of variables can 
be accessed while inside a function, either indirectly through a pointer or by another function call:

• Global variables, meaning all variables within the file scope or application scope

• Local variables, whose addresses are retrieved implicitly by the automatic conversion of array 
references to pointers, or explicitly by the & operator

If your programs conform to the standard ANSI/ISO version of C, this assumption does not affect your 
code. If the code that you are compiling is not standard, and it violates this assumption, the optimization 
process may adversely affect the behavior of the program. 

To avoid unexpected results, and to ensure that your program executes correctly once optimized, follow 
the coding guidelines listed below:

• Don’t make assumptions based on memory layout when using pointers. For example, if x points to 
the first member of a structure, x+1 may not necessarily point to the second member of the same 
structure. Similarly, if y is defined as a pointer to the first declared variable in a list, do not assume 
that y+1 points to the second variable in the list.

• When referencing an array, keep the references inside the array bounds.

• Ensure that all the required arguments are passed to functions.

• When subscribing one array, don’t access another array indirectly. For example, if in the construct 
x[y-x], x and y are the same type of array, the construct is equivalent to *(x+(y-x)), which is 
equivalent to *y. Thus the construct actually references the array y. 

• When pointing to objects, don’t reference outside the bounds of these objects. The optimizer 
assumes that all references of the form *(p+i) apply within the bounds of the variable(s) to which 
p points.

• When the need arises for variables that are accessed by external processes, be sure to declare the 
variables as volatile. Use this keyword judiciously, as it may have adverse effects on 
optimization.
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Chapter 6
Runtime Environment

This chapter describes the startup code used by the SC100 C compiler, the layout and configuration of 
memory, and the calling conventions which the compiler supports.

It contains the following sections:

• Section 6.1, “Startup Code,” provides details of the runtime code used for system initialization and 
finalization. 

• Section 6.2, “Memory Models,” describes the two memory models supported by the compiler.

• Section 6.3, “Memory Layout and Configuration,” describes the way that the compiler maps 
memory, and explains how you can change this configuration to suit your requirements.

• Section 6.4, “Calling Conventions,” describes the stack-based and other calling conventions that the 
compiler supports.

• Section 6.5, “Saturation,” provides details about saturation switches and saturation states.

6.1   Startup Code
The compiler runtime startup code consists of the following components:

• Initialization code, which is executed when the program is initiated and before its main function is 
called

• Finalization code, which controls the closedown of the application after the program’s main function 
terminates

• Entry points for low level I/O services

• The interrupt vector table

• Support for debugging tools

The entire startup code resides in assembly code files, named crt.asm and crtnosat.asm, which are 
located in the directory $SCTOOLS_HOME/src/rtlib/. crt.asm turns saturation on and is the default. 
crtnosat.asm sets the saturation mode bit to off. The object module for the files is located in the 
directory $SCTOOLS_HOME/lib.

The compiler startup code contains two phases:

• Bare board startup code, which is used for programs which execute without the support of any 
runtime executive or operating system. This phase resets the interrupt vector and initializes all 
necessary hardware registers.

• C environment startup code, which is a mandatory phase for all configurations. This phase 
initializes the runtime structure of the application for the C environment, and includes the 
finalization code used following termination of the program.
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6.1.1  Bare Board Startup Code
The bare board startup phase assumes that no operating system or runtime executive is running. It performs 
the various actions which are normally carried out automatically by the operating system or runtime 
executive, as follows:

1. The reset interrupt vector is set to point to the system entry point __crt0_start, as if the 
system has just been reset. The interrupt vector table holds the addresses of all interrupt 
handlers. The first entry in this table is the system entry point. All other entries in the interrupt 
vector table point by default to the abort function. Further information about interrupt 
handlers is provided in Section 6.4.5, “Interrupt Handlers.” See Chapter 7, “Runtime 
Libraries,” for more information about abort and other runtime functions.

2. The hardware registers are initialized as follows:

• The four modulo (M) registers (m0-m3) are initialized to linear addressing.

• The status register is set to an initial value taken from the linker command file used at link time. 
This file includes a label SR_setting, which defines the initial value to be assigned to the status 
register following system reset. Table 6-1 shows the default status register settings.

3. If the system includes a timer, the timer is activated.

4. The bare board startup phase terminates by jumping to the C environment startup code entry 
point, ___start.

Table 6-1.   Status Register Default Settings

Setting Type Value

Mode: Exception mode

Interrupt level: 7

Saturation: On

Rounding mode: NEAREST_EVEN
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6.1.2  C Environment Startup Code
The C environment startup phase is applicable to all programs. The entry point for this phase is ___start. 
This phase includes initialization code used prior to program start, and finalization code used after the 
application terminates.

6.1.2.1   C environment initialization code
The following initialization actions are executed before the application starts:

1. The memory map is set up and initialized. The stack pointer (SP) value is loaded into memory 
by the stack start address, located at StackStart. This label is defined in the linker 
command file and used by the linker at link time. For further information about the memory 
map, see Section 6.2, “Memory Models.”  

2. If the -mrom option has been specified in the shell command line, initialized variables are 
copied from ROM into RAM. This option is required for applications which do not use a 
loader.

3. The argv and argc arguments are set up.

4. Interrupts are enabled. Until this point, interrupts have been disabled.

5. The application main procedure entry point is called using the function main.

6.1.2.2   Initialization of variables
If your system uses a loader, this will by default initialize all variables. In systems that do not include a 
loader, it is important that you specify the -mrom option when you compile the final version of your 
application, to ensure that the initialized variables are copied from ROM into RAM at startup.

Note: Before a C program executes, certain global variables may assume the assignment of an initial value 
of zero. The compiler does not preinitialize variables automatically. You must ensure that your code 
includes explicit initialization of any variable that must have an initial value of zero.

6.1.2.3   C environment finalization code
On return from the application main function, the runtime function exit is called. This terminates any I/O 
services which have not yet terminated, and stops the processor by issuing the stop instruction.

Note: Certain embedded real time applications never terminate. Such termination activities do not usually 
pertain to embedded applications, but may be of use during early development and debugging 
stages.

6.1.2.4   Low level I/O services
The C environment startup code includes the input and output of low level, buffered I/O services. The code 
uses calls to __send and __receive in order to interface with debugging tools and/or runtime systems. 
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6.1.3  Configuring Your Startup Code
If the default runtime setup does not match your configuration, you need to modify your startup code 
accordingly. 

To create your own runtime configuration code, follow the steps described below:

1. Make your own copy of the default startup file, crtsc100.asm, with a name of your choice, 
as shown in the following example:

Example 6-1.   Creating a new startup file

cp install-dir/src/rtlib/crtsc100.asm mysc100.asm

2. Make the required changes to the new file.

3. Assemble the modified file, as shown in Example 6-2. 

Example 6-2.   Assembling the modified startup file

asmsc100 -b -l mysc100.asm

The generated object file has the same file name as the source file, and the extension .eln. In this 
example, the object file generated is mysc100.eln. 

4. Use the modified file by specifying the -crt option in the shell command line, as shown 
in Example 6-3, to ensure that the modified startup file is used at link time.

Example 6-3.   Using the modified startup file

scc -crt mysc100.eln my-object-files.eln
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6.2   Memory Models
The StarCore architecture supports big, small, and tiny memory models. These memory models save code 
size and enhance performance. The following table provides information about each memory model:

The three compilation models allow the compiler to generate references to global and static data without 
global knowledge as to the variables final allocation address in memory. For each model the compiler 
assumes that references to global and static data fit within the corresponding size implied by the model. 
The expectation is that the linker will generate errors whenever a variable is resolved to not fit within the 
range defined by the memory model.

6.2.1  Small and Tiny Memory Models
If the application is small enough to allow all static data to fit into the lower 64K of the address space, then 
more efficient code can be generated. This small memory model is the default and assumes that all 
addresses are 16-bit immediate. The tiny memory model assumes that all addresses are within the range of 
a signed 16-bit immediate (effectively an unsigned 15-bit range).

6.2.2  Big Memory Model
The big memory model does not restrict the amount of space allocated to addresses. When the compiler 
uses the big memory model to access a data object, whether static or global, it must use a longer instruction 
that includes a 32-bit address. This operation requires an additional word, and as a result it produces code 
that is larger, and in some cases slower than a similar operation using the small or tiny memory models.

Example 6-4 illustrates the code sequence to generate the address of a global symbol in memory and the 
sequence to reference the memory contents of a global symbol for each memory model.

Table 6-2.   Memory Models

Memory 
Models

Option Bit Description

Big memory 
model

-mb unsigned 32-bit 
addresses

Does not restrict the amount of space allocated to addresses. 
Uses a longer instruction that includes 32-bit instructions.

Small memory 
model

default unsigned 16-bit 
addresses

The default model. Assumes that all addresses are 16-bit 
immediate.

Tiny memory 
model

-mt signed 16-bit 
addresses

Assumes that all addresses are within the range of a signed 
16-bit immediate, effectively an unsigned 15-bit range.
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Example 6-4.   Big, small, and tiny memory models

Big memory model:

move.l address,d0     (3 16-bit words)
moveu.l #address, d0  (3 16-bit words)

Small memory model:

move.l <address,d0    (2 16-bit words)
moveu.l #address, d0  (3 16-bit words)

Tiny memory model:

move.l <address,d0    (2 16-bit words)
move.w #address, d0   (2 16-bit words)

You can use certain instructions only in small memory mode. If < is omitted in conjunction with these 
instructions, an error results. Example 6-5 shows the instruction bmset.w, which sets bit #zero in the 
specified address, and is valid only in small memory models.

Example 6-5.   Small and tiny memory mode instruction

bmset.w #0001,<address

Note: For maximum efficiency, it is recommended that you place data in the smallest possible locations 
of the memory map (lower 32K or lower 64K), in order to enable the compiler to use small or tiny  
memory modes.

6.2.3  Linker Command Files
The SC100 Linker refers to a linker command file at link time, for various runtime values, addresses and 
labels. Three linker command files are provided, one for each memory mode. 

These files are: 

• crtscsmm.cmd, used in small memory mode,

• crtsctmm.cmd, used in tiny memory mode, and

• crtscbmm.cmd, used when big memory mode is selected. 

All three files are located in the install-dir/etc directory.
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6.3   Memory Layout and Configuration
The SC100 default memory layout is a single linear block which is divided into data and code areas. 
C programs generate code and data in sections. The compiler places each of these sections in its own 
continuous space in memory. 

The default layout of the SC100 memory is illustrated in Figure 6-1

Figure 6-1.   SC100 Default Memory Layout

All three memory models use the same default layout, but with different default values that define the 
distribution of the memory areas, as shown in Table 6-3, Table 6-4, and Table 6-5 on page 6-8. You can 
change these default values, and configure the memory map to meet your specific requirements, as 
described in Section 6.3.3, “Configuring the Memory Map.” 

The layout and functionality of the stack and heap are common to all the memory models, and are 
described in the sections that follow.
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Interrupt vector table

TopOfMemory
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TopOfStack

0

DataStart

CodeStart
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The default memory map values for the small memory model are listed in Table 6-3. These values are held 
in the file crtscsmm.cmd.

Table 6-4 lists the default memory map values for the big memory model. These values are held in the file 
crtscbmm.cmd.

Table 6-5 lists the default memory map values for the tiny memory model. These values are held in the file 
crtsctmm.cmd.

6.3.1  Stack and Heap Configuration
The heap and stack are allocated from the same area of memory and must be contiguous. The compiler 
always treats the stack and heap as a continuous area of memory. The other sections of memory can be 
distributed, and there are no restrictions relating to their location.

Table 6-3.   Small Memory Model Default Values

From Default value To Default value Contents

0 0x1ff Interrupt vector table

DataStart 0x0200 DataStart+DataSize-1 0x101ff Global and static variables

CodeStart 0x100000 StackStart-1 0x27fff Program code

StackStart 0x200000 TopOfStack 0x2fff00 Stack and heap

ROMStart 0x300000 TopOfMemory 0x3fffff ROM 

Table 6-4.   Big Memory Model Default Values

From Default value To Default value Contents

0 0x1ff Interrupt vector table

DataStart 0x0200 DataStart+DataSize-1 0xfffff Global and static variables

CodeStart 0x100000 StackStart-1 0x3ffff Program code

StackStart 0x200000 TopOfStack 0x2fff00 Stack and heap

ROMStart 0x300000 TopOfMemory 0x3fffff ROM 

Table 6-5.   Tiny Memory Model Default Values

From Default value To Default value Contents

0 0 0x1ff 0x1ff Interrupt vector table

DataStart 0x200 DataStart+DataSize-1 0x81ff Global and static variables

CodeStart 0x100000 StackStart-1 0x27fff Program code

StackStart 0x200000 TopOfStack 0x2fff00 Stack and heap

ROMStart 0x300000 TopOfMemory 0x3fffff ROM 
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6.3.1.1   Runtime stack
The compiler allocates an area of memory to the runtime stack, which is used for the following purposes:

• Allocation of local variables

• Passing arguments to functions

• Saving function return addresses

• Saving temporary results

The stack is allocated in the area above the space used for code, and grows in an upward direction toward 
the top of memory. The compiler uses the SP register to manage this stack. 

The SC100 architecture includes two stack pointers:

• NSP, used when the processor is running in Normal mode

• ESP, used when the processor is running in Exception mode

As shown in Table 6-1 on page 6-2, the default mode at initialization is Exception mode.

The compiler makes no assumptions about which stack pointer to use, and uses the pointer for the current 
processor mode to point to the address at the top of the stack.

When the system is initialized, the stack pointer for the current mode is set by default to the address of the 
location directly after the code area, as defined in StackStart in the linker command file. The actual 
address of the stack is determined at link time.

The stack pointer for the current processor mode is automatically incremented by the C environment at the 
entry to a function. This ensures that sufficient space is reserved for the execution of the function. At the 
function exit, the stack pointer is decremented, and the stack is restored to its previous size prior to 
function entry. If your application includes assembly language routines and C code, you must ensure at the 
end of each assembly routine that the current stack pointer is restored to its pre-routine entry state.

Note: If you change the default memory configuration, remember to allow sufficient space for the stack 
to grow. If a stack overflow occurs at runtime, this will cause your program to fail. The compiler 
does not check for stack overflow during compilation or at runtime. 

6.3.1.2   Dynamic memory allocation (heap)
The runtime libraries supported by the compiler include a number of functions that enable you to allocate 
memory dynamically for variables. See Chapter 7 for details of the runtime libraries supported. Since C 
does not support the dynamic allocation of memory, the compiler assigns an area of memory as a heap for 
this purpose.

The compiler allocates memory from a global pool for the stack and the heap together. The lower address 
of the area assigned to the stack and heap is defined in StackStart, in the linker command file. The heap 
starts at the top of memory, and is allocated in a downward direction toward the stack. 

Objects that are dynamically allocated are addressed only with pointers, and not directly. The amount of 
space that can be allocated to the heap is limited by the amount of available memory in your system. 

To make more efficient use of the space allocated to data, you can use the heap to allocate large arrays, 
instead of defining them as static or global. 

For example, a definition such as struct large array1[80]; can be defined using a pointer and the 
malloc function, as illustrated in Example 6-6.
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Example 6-6.   Allocating large arrays from the heap

struct large *array1;
array1 = (struct large *)malloc(80*sizeof(struct large));

6.3.2  Static Data Allocation
When you compile your application without cross-file optimization, the allocations for each file are 
assigned to different sections of data memory. At link time these are dispatched to different addresses.

When compiling with cross-file optimization, the compiler uses the same data section for all allocations. If 
you want to override this and to instruct the compiler to use non-contiguous data blocks, you can edit the 
machine configuration file to define the exact memory map of the system that you want to use. For more 
details, see Section 6.3.4, “Machine Configuration File.” 

6.3.3  Configuring the Memory Map
The default values in the SC100 memory map are easily configurable, by modifying the linker command 
file. When making such changes, it is important that you ensure that the code size and data size values that 
you specify do not overlap.

The stack and the heap must be always be located together in one contiguous area of memory. The 
compiler makes no assumptions about the layout of the other sections of memory, which can be split and 
distributed over non-contiguous parts of memory, as required.

Section 6.3.3.1, “Memory map configuration example,” provides an example of a requirement for a 
modified memory map configuration, and describes the changes to be defined in the linker command file 
for this sample configuration.

Note: If you choose not to modify the default command file, but rather save the changes in a new 
command file instead, use the -mem option to pass the new command file to the linker. If you use 
the -Xlnk option to do this, both the new command file and the default command file will be passed 
to the linker, resulting in errors.

6.3.3.1   Memory map configuration example
This example assumes that you have a system with non-contiguous memory, and would like to configure 
the memory as follows:

• All code placed in external memory (addresses 0x10000000 through 0x10100000)

• All data placed in internal memory

• Some local memory reserved for the most frequently used functions and overlays (addresses 
0x10000 through 0x20000)

• All data placed in the lower 64K addresses, in order to be able to use the small memory model 
compilation mode

The memory map that meets these requirements is shown in Example 6-7:

Example 6-7.   Modified memory map configuration

From To Contents

0 0x1ff Interrupt vectors 
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Example 6-8 shows the definitions in the crtscsmm.cmd file that specify this memory map configuration:

Example 6-8.   Modified memory configuration in the linker command file

.provide _DataSize,   0x10000 ; Sets the data size.

.provide _CodeStart,  0x10000000 ; Sets the loader code start address.

.provide _StackStart, 0x20000 ; Sets the stack start address; 
; the stack grows upwards.

.provide _TopOfStack, 0x7fff0 ; The heap start address; 
; the heap grows downwards.

.provide _ROMStart,   0x80000 ; Sets the ROM start address.

6.3.4  Machine Configuration File
The machine configuration file contains the following:

• Information about data types and alignment requirements, used by the compiler for reference. This 
data must not be changed.

• Memory structure information, used by the compiler to allocate variables in the data sections of 
memory. This information can be modified if required.

By default, the compiler uses the file proc.config, located in the install-dir/etc directory. A 
different machine configuration file can be specified using the -mc option in the shell command line.

The SC100 memory structure consists of physical and logical memory maps, as follows:

• Physical memory is divided into several memory spaces. Each memory space is a physical entity 
consisting of a data bus and an address bus. A physical memory space is defined in terms of its size 
in words and the width of its address bus, and comprises blocks of words with contiguous addresses, 
described as physical memory areas. 

• Logical memory areas are defined as blocks of memory words with contiguous addresses. These 
words are used by the compiler as if they were in physical memory areas. The addresses of the 
logical areas are mapped as offsets to physical memory addresses at link time.

This dual memory map structure provides a high degree of flexibility during the loading of application 
code.

6.3.4.1   Defining the memory configuration
Each memory space is defined individually in the machine configuration file, by specifying a space 
identifier and a description, comprising:

• Memory space type: program or data.

• Word size, in bytes.

• Area list, defining one or more logical areas.

0x200 0xfffd Global and static variables

0x10000 0x1ffff Local code 

0x20000 0x7fff0 Stack and heap

0x80000 0xfffff ROM

0x10000000 0x100fffff External code 

Example 6-7.   Modified memory map configuration
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• The addresses in the logical areas, as positive integers, used as offsets to physical memory areas.

• Physical area type: single-port RAM (ramsp), dual-port RAM (ramdp) or ROM (rom).

• Attached spaces (optional). This is used for dual-port RAM only, when ramdp is the defined area 
type, to specify the two memory spaces. It is important that the code ensures address consistency 
between the corresponding spaces.

The syntax for defining a memory space is as follows:

space definition:
define space <space identifier>:

space_type;
word_size;
area_list;

end define
;
space_type:

program | data
;
word_size:

word : byte_number
;
area_list:

area | area_list area
;
area:

address_value .. address_value : area_type opt_attached_spaces ;
;
area_type:

ramsp | ramdp | rom
;
opt_attached_spaces:

[ space_number , space_number ] 
;

In Example 6-9, a one-word data space is defined, providing one logical area that can be used for the 
allocation of variables. 

Example 6-9.   Defining a data memory space

define space data_0 :
data;
word : 2;
0x0000 .. 0xfffff : ramsp;

end define

Example 6-10 shows the definition of a 2-word program space in ROM.
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Example 6-10.   Defining a program memory space

define space pgm :
program;
word : 4;
0x0000 .. 0x3fff : rom;

end define

At link time, these areas are mapped to the relevant physical memory space, and the actual addresses are 
calculated as offsets to the physical space starting address.

A data space can be divided into multiple logical areas, as shown in Example 6-11. When the compiler 
executes with cross-file optimization, it divides memory into these logical areas, and allocates variables 
accordingly.

Example 6-11.   Defining multiple memory spaces

define space data_1 :
data;
word : 2;
0x0000 .. 0x3fff : ramsp;
0x0800 .. 0xffff : ramdp [data_0,data_1];
0x10000 .. 0x13fff : ramsp;
0x40000 .. 0x47fff : ramsp;

end define

Note: If you define new memory spaces in the machine configuration file, it is important that you also add 
these space definitions in the linker command file, to enable the linker to locate them at link time.

6.3.5  Application Configuration File
The application configuration file contains information about the interaction between the application 
software and the hardware. This file indicates to the compiler how to compile specific software units in 
order to ensure efficient sharing of hardware resources, in particular memory space. This information can 
be modified, to suit the requirements of your application.

The default application configuration file is named minimal.appli, and is located in the 
install-dir/etc directory. A different application configuration file can be specified, using the 
-ma option.

This file contains the following functional section types:

• Schedule section, which defines the entry points for the software units in the application, and their 
overlay capabilities for local variables. See Section 6.3.5.2, “Schedule section,” for details.

• Binding section, which specifies the links between software interrupt routines and hardware 
interrupt vectors, and between software-defined variables and fixed memory addresses. 
See Section 6.3.5.3, “Binding section,” for details.

• Overlay section, which specifies the overlay capabilities of global variables. See Section 6.3.5.4, 
“Overlay section,” for details.
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6.3.5.1   File structure and syntax
More than one section of each type can be included in the file. The order in which the sections are defined 
in the file is unimportant. Each of the section types is optional and can be omitted. 

The syntax of the application configuration file is as follows:

translation_unit:
header_section 

configuration section_list 
end configuration

;
header_section:

opt_version
;
opt_version:

version string_content 
;
section_list:

section | section_list section
;
section:

schedule_section | binding_section | overlay_section
;

6.3.5.2   Schedule section
The schedule section defines the entry point structure of an application, by specifying a "call tree". The call 
tree root is a C function name that defines the starting entry point for an application. Each node in the call 
tree is the name of an entry point of a unit that can be called during the execution of the application. 

Each call tree node is defined as a call tree item, and is given a ct number that is unique for the 
application. A call tree item can be one of three types:

• Background task, identifying the main entry point, defined as main

• Interrupt handler, identifying an interrupt routine entry point, defined as it_entry, with a number 
that is used by the binding section to link to the associated hardware interrupt vector

• Task entry point, defined as task_entry, for example, an operating system task

The schedule section can optionally include an overlay specification, which informs the compiler which 
groups of local variables can use the same memory location during execution of the application. The 
compiler is able to overlay groups of local variables automatically, but only when it is clear that the two 
sets of variables do not share the same lifetime, and are therefore not active simultaneously. By specifying 
overlays in this file, you provide the necessary information in advance to help the compiler make more 
efficient use of memory space. 

The overlay specification in the schedule section relates to local variables only. Overlays for global 
variables are specified in the overlay section, as described in Section 6.3.5.4, “Overlay section.” 
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The syntax of the schedule section is as follows:

schedule_list:
schedule_elmt | schedule_list schedule_elmt

;
schedule_elmt:

call_tree_list ; opt_overlay_spec
;
call_tree_list:

call_tree_item | call_tree_list call_tree_item
;
call_tree_item:

ct [int_constant] : main = ident ;  
ct [int_constant] : it_entry int_constant = ident ;  
ct [int_constant] : task_entry = ident ;

;
opt_overlay_spec:

overlay = entry_overlay_list ;  
;
entry_overlay_list:

[group_list]
;
group_list:

group | group_list, group
;
group:

[entry_number_list]
;
entry_number_list:

entry_number | entry_number_list, entry_number
;
entry_number:

ct[int_constant] | int_constant
;
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Example 6-12 defines two entry points, in addition to main. The function task1() is defined as a task 
entry point and the function int_entry() is defined as an interrupt handler. 

Note that defining a function as an interrupt handler in the application configuration file is equivalent to 
using #pragma interrupt in the source file. For more details, see Section 6.4.5, “Interrupt Handlers.” 

Example 6-12.   Defining additional entry points for an application

configuration 

schedule 
ct[0] : main = _main; 
ct[1] : task_entry = _task1; 
ct[2] : it_entry 0 = _int_entry; 

end schedule

binding 
    place ___stackX on space 0 at 1; 
end binding

end configuration

6.3.5.3   Binding section
The binding section performs the following functions: 

• Assignment of fixed memory addresses to variables. A full memory address is specified with a 
memory binding directive, using the following syntax: 

memory_binding_directive:

place full_ident on space_identifier at number

• Specification of the links between fixed interrupt entries and hardware interrupt vector addresses. 
An interrupt binding directive is used to specify an interrupt entry number, in the range 0-15, and the 
corresponding hardware vector number, in the range 1-16, using the following syntax:

it_binding_directive:

place it_vector interrupt_number on space_identifier at vector_number

The syntax of the binding section is as follows:

binding_directive:
memory_binding_directive | it_binding_directive

;
binding_directive_list:

binding_directive binding_directive_list ; binding_directive
;
binding section:

binding
binding_directive_list

end binding
;
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In Example 6-13, the location of global variable mem is fixed at absolute address 0x2000: 

Example 6-13.   Placing a variable at an absolute location

configuration 

schedule 
ct[0] : main = _main; 
ct[1] : it_entry 0 = _int_entry;

end schedule

binding 
place ___stackX on space 0 at 1;
place _mem on space 0 at 0x2000; 

end binding

end configuration

6.3.5.4   Overlay section
The overlay section specifies how the compiler should overlay global variables in order to further reduce 
the amount of memory required for data. As with local variables, in many cases the compiler can 
automatically detect that two data objects do not share the same lifetime and as a result, the memory 
allocated to these objects can be shared. This feature is needed for cases where the compiler cannot 
identify statically that the object lifetimes of global variables do not conflict.

Defining the overlay specification for global variables includes the following:

• Grouping the global variables into sets that can share the same memory space. In the overlay section 
syntax, the full identity is specified for each global variable, or list of variables, and defined as 
symbol_list. 

• Defining each set of global variables as a symbol_group, associated with a symbol_list and an 
identifying group number. 

• Specifying compatibility clauses that define which symbol groups can be overlaid, using the 
keyword discern. 

• Specifying a list of compatibility clauses to indicate which symbol groups in the application can 
share the same memory space.

The syntax of the overlay section is as follows:

overlay section:
overlay

opt_overlay_spec
compatibility_list

end overlay
;
symbol_list:

full_ident | symbol_list, full_ident
;
symbol_group:

SG [number] = [symbol_list] ;
;
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symbol_group_list:
symbol_group | symbol_group_list symbol_group

;
sg_ref:

SG [number]
;
sg_list:

sg_ref | sg_list, sg_ref
;
compatibility_clause:

discern_sg_ref : sg_list ;
;
compatibility_list:

compatibility_clause | compatibility_list compatibility_clause
;

Example 6-14 shows an overlay section that specifies that the application will never access the two global 
arrays, arr1 and arr2, at the same time, and they can therefore share the same physical memory location. 

Example 6-14.   Defining global variable overlays 

configuration 
schedule 

ct[0] : main = _main; 
end schedule 

binding 
place ___stackX on space 0 at 1; 

end binding 
  
overlay 

sg[0] = [_arr1]; 
sg[1] = [_arr2]; 
discern sg[0] : sg[1]; 

end overlay 

end configuration
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6.4   Calling Conventions
The compiler supports a stack-based calling convention. Additional calling conventions are also supported. 
Calling conventions can be mixed within the same application.

Specific calling conventions can be enforced using pragmas. For further information about the use of 
pragmas for this purpose, refer to Section 3.4.5, “Pragmas,” on page 3-52.

When compiling in separate compilation mode, non-static functions use the stack-based calling 
convention.

6.4.1  Stack Pointer
The SP register serves as the stack pointer, which points to the first available location. The stack direction 
is toward higher addresses, meaning that a push is implemented as (sp)+. The stack pointer must always 
be 8-byte aligned.

6.4.2  Stack-Based Calling Convention
The following calling conventions are supported:

• The first (left-most) function parameter is passed in d0 if it is a numeric scalar or in r0 if it is an 
address parameter, regardless of its size. The second function parameter is passed in d1 if it is a 
numeric scalar, or in r1 if it is an address parameter, regardless of its size. The remaining parameters 
are pushed on the stack. Long parameters are pushed on the stack using little endian mode, with the 
least significant bits in the lower addresses.

• Structures and union objects that can fit in a register are treated as numeric parameters, and are 
therefore candidates to be passed in a register.

• Numeric return values are returned in d0. Numeric address return values are returned in r0. 
Functions returning large structures, meaning structures that do not fit in a single register, receive 
and return the returned structure address in r2. The space for the returned object is allocated by the 
caller.

• Functions with a variable number of parameters allocate all parameters on the stack.

• Parameters are aligned in memory according to the base parameter type, with the exception of 
characters and unsigned characters that have a 32-bit alignment.

The following registers are saved by the caller: d0-d5, r0-r5, n0-n3.

The following registers are saved by the callee, if actually used: d6-d7, r6-r7. 

The compiler assumes that the current settings of the following operating control bits are correct:

• Saturation mode

• Round mode

• Scale bits

The application is responsible for setting these mode bits correctly.
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Example 6-15 shows two function calls and the parameters that are allocated for each call.

Example 6-15.   Function call and allocation of parameters

Function call:

foo(int a1, struct fourbytes a2, struct eightbytes a3, int *a4) 

Parameters:

a1 - in d0
a2 - in d1
a3 - in stack
a4 - in stack

Function call:

bar(long *b1, int b2, int b3[])

Parameters:

b1 - in r0
b2 - in d1 
b3 - in stack.

The stack-based calling convention must be used when calling functions that are required to maintain a 
calling stack. 

The compiler is able to use optimized calling sequences for functions that are not exposed to external calls. 

Local and formal variables are allocated on the stack and in registers.

Table 6-6 summarizes register usage in the stack-based calling convention.

Table 6-6.   Register Usage in the Stack-based Calling Convention

Register Used as Caller Saved Callee Saved

d0 First numeric parameter
Return numeric value

+

d1 Second numeric parameter +

d2-d5 +

d6-d7 +

d8-d15 +

r0 First address parameter
Return address value

+

r1 Second address parameter +

r2 Big object return address +

r3-r5 +

r6 Optional argument pointer +

r7 Optional frame pointer +

n0-n3, m0-m3 +
6-20 SC100 C Compiler



Calling Conventions
6.4.3  Optimized Calling Sequences
A stack-less convention may be used when calling functions that are not reentrant, if this technique 
generates more efficient code than other conventions. 

This convention will be used only if the function is not visible to external code.

When using this calling convention, local variables may be allocated statically, meaning not on a stack. 
Functions with mutually exclusive lifetimes may share space for their local variables.

Actual parameters are placed by the calling function at the locations allocated for the formal parameters in 
the called function. The compiler may use registers and memory locations as required when allocating 
locations for the formal parameters.

Under this calling convention, all registers are classified as caller-saved.

Return values from functions are placed in the space allocated for the function return value in the calling 
function. The compiler may use a register or a memory location as the space for the function return value.
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6.4.4  Stack Frame Layout
The stack pointer points to the top (high address) of the stack frame. Space at higher addresses than the 
stack pointer is considered invalid and may actually be unaddressable. The stack pointer value must always 
be a multiple of eight.

Figure 6-2 shows typical stack frames for a function, indicating the relative position of local variables, 
parameters and return addresses. 

Figure 6-2.   Stack Frame Layout

The caller must reserve stack space for return variables that do not fit in registers. This return buffer area is 
typically located with the local variables. This space is typically allocated only for functions that make 
calls that return structures. Beyond these requirements, a function is free to manage its stack frame as 
necessary.

The outgoing parameter overflow block is located at the top (higher addresses) of the frame. Any incoming 
argument spill generated for varargs and stdargs processing must be at the bottom (low addresses) of 
the frame. 

The caller puts argument variables that do not fit in registers into the outgoing parameter overflow area. If 
all arguments fit in registers, this area is not required. A caller has the option to allocate argument overflow 
space sufficient for the worst case call, use portions of this space as necessary, and/or leave the stack 
pointer unchanged between calls.

High addresses

Low addresses

Incoming parameters

Return address

Saved registers

Outgoing parameters overflow

Local variables

Stack
Pointer
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Local variables that do not fit into the local registers are allocated space in the local variables area of the 
stack. If there are no such variables, this area is not required.

6.4.5  Interrupt Handlers
Functions which require no parameters and return no result can be designated as interrupt handler 
functions. The process of creating an interrupt handler function includes:

• Defining the function as an interrupt handler

• Linking the function to the appropriate interrupt vector entry

An interrupt handler can be be defined in one of two ways:

• Using #pragma interrupt in the source code. For more detail about this pragma, refer to 
Section 3.4.5.3.4, “Defining a function as an interrupt handler,” on page 3-56. 

• Defining an interrupt entry point in the application, by editing the schedule section of the application 
configuration file, as described in Section 6.3.5, “Application Configuration File.” 

To create the link between the function and the interrupt vector entry, you can use any one of the following 
options:

• In the code that calls the function, place a call to the handler function in the interrupt vector entry.

• Use the signal.h library function to insert a call to the interrupt handler function into the required 
interrupt vector entry. For syntax details, see Section 7.8, “Signal Handling (signal.h),” on page 
7-11.

• If the function is very small, you can embed it in the interrupt vector entry, by modifying the startup 
code file, crt.asm. The size of each interrupt vector entry is 64 bytes. With this option, there is no 
need for an explicit call from the vector to the function.

Interrupt handler functions always follow the stack-based calling convention. When an interrupt function 
is called, the interrupt handler saves all registers and all other resources that are modified by the function. 
Upon returning from the function all registers and hardware loop state saved at entry are restored to their 
original state. 

Local variables are saved on the stack. Interrupt handlers that are known to be non-interruptible may also 
allocate data statically.

Return from interrupt is implemented using an RTE instruction.

6.4.6  Frame Pointer and Argument Pointer
The compiler does not use a frame pointer or an argument pointer.

If, however, the use of a frame pointer or an argument pointer is required by external code, r7 may be 
allocated as a frame pointer and r6 as an argument pointer. When these registers are allocated as frame 
pointer and/or argument pointer they should be saved and restored as part of the function prolog/epilog 
code.
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6.4.7  Hardware Loops
All hardware loop resources are available for use by the compiler. It is assumed that no nesting occurs 
when entering a function. As a result, a function may use all 4 nesting levels for its own use. An additional 
side effect of this assumption is that loops that include a function call as part of the loop code cannot be 
implemented using hardware loops, unless the compiler can infer the nesting level of the called function 
from static variables known at compilation time.

Loops are nested beginning with loop counter 3 at the innermost nesting level.

6.4.8  Operating Modes
The compiler makes the following assumptions regarding runtime operating modes and the machine state:

• All modulo (M) registers (m0-m3) are assumed to contain the value 0 (linear addressing). If the use 
of an M register is required, the using function must restore the M register to the value 0 before 
returning or before calling another function.

• No specific settings are assumed for the operating mode settings in the EMR register. The compiler 
assumes that the default settings in the startup code, including saturation modes, rounding mode and 
scale bits, are set by the user. You can control and change these operating modes during execution 
of the application. Refer to the SC100 architecture documentation for further details.
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6.5   Saturation
By default, saturation is turned off; however, there is a switch option that allows you to turn saturation on. 
It is important that you intricately know your program in order to get the desired results on overflow. 
Choose the compilation model based upon your program. 

Use a combination of the -fractional and -no_overflow options to tell the compiler the overflow 
requirements of your particular program. -fractional indicates that your code contains intrinsics that 
rely on saturation when overflowing. The compiler gives an error message to standard error whenever it 
finds an intrinsic in the compilation module and the -fractional switch is not specified. The 
-no_overflow option is an optimization that allows the compiler to relax the definition of unsigned 
integers overflowed by saturating rather than modular wrap-around behavior. 

6.5.1  Saturation switches
The -fractional switch combined with the -no_overflow switch determines the model the compiler 
uses to generate code for the SC140. Combined, the two switches give the compiler three approaches to 
generate code:

• default: saturation mode-bit off, generating non-intrinsic code that uses the saturation bit. When you 
do not use -fractional and/or -no_overflow, the compiler automatically uses this default 
setting. This is the most efficient and correct for generic ANSI/ISO C codes that do not use fractional 
operations.

• -fractional: saturation mode-bit on, generating non-intrinsic code that does not rely on 
saturation bit. This generates intrinsic code that has the proper saturation overflow semantics and 
non-intrinsic code that correctly conforms to ANSI/ICO C overflow rules. This incurs a performance 
degradation over the intrinsic code today, but will be correct.

• -fractional and -no_overflow: saturation mode-bit on, generating non-intrinsic code that uses 
the saturation bit. This code does not honor the ANSI/ICO C defined behavior of overflow on 
unsigned values as they will saturate on overflow. This may result in an incorrect program. The 
-fractional and -no_overflow combination is most efficient on C code that uses the fractional 
intrinsics. Use this combination for compatibility with prior StarCore compiler releases.

6.5.2  Saturation states
The following table illustrates the various saturation states based on the combinations of the compiler 
switches. For example, if you have -fractional turned off, and -no_overflow turned on, then the 
saturation bit is off, and the compiler’s performance is fast.

Option Combinations Results

-fractional -no_overflow sat_bit sr{2} Compiler performance

off off off fast

off on off fast

on off on slow

on on on fast
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Chapter 7
Runtime Libraries

This chapter describes the C libraries and I/O libraries that the SC100 C compiler supports. Each table in 
this chapter is organized in alphabetical order, according to the file, function, or constant name in the first 
column in the table.

Table 7-2 summarizes the ISO standard C libraries that the compiler supports.

The non-ISO C library supported by the compiler is shown in Table 7-2. This library contains the built-in 
intrinsic functions supplied with the compiler.

Table 7-1.   Supported ISO Libraries

Header file Description Section Page

ctype.h Character Typing and Conversion 7.2 7-2

float.h Floating Point Characteristics 7.3 7-4

limits.h Integer Characteristics 7.4 7-8

locale.h Locales 7.5 7-8

math.h Floating Point Math 7.6 7-9

setjmp.h Nonlocal Jumps 7.7 7-11

signal.h Signal Handling 7.8 7-11

stdarg.h Variable Arguments 7.9 7-11

stddef.h Standard Definitions 7.10 7-12

stdio.h I/O Library 7.11 7-12

stdlib.h General Utilities 7.12 7-15

string.h String Functions 7.13 7-17

time.h Time Functions 7.14 7-20

Table 7-2.   Supported Non-ISO Libraries

Header file Description Section Page

prototype.h Built-in Intrinsic Functions 7.15 7-21
SC100 C Compiler 7-1



Runtime Libraries
7.1   Providing Runtime Libraries
Starting with the StarCore Tools release 2.2.0, the compiler includes the sources and the makefile 
necessary for rebuilding the runtime libraries. The default libraries are located in the lib directory, which 
resides in the SW Tools directory (ex: $ SC100_HOME/lib). This lib directory has the libraries 
compiled with the small (-Os) optimization. Another set is provided in the lib_debug directory that were 
built with the debug (-g) option. When using the compiler, please note that the runtime libraries that are 
used (linked during compilation of a target source program) are the ones in the lib directory.

7.1.1  Using Libraries with debug
To use libraries with debug:

1. Rename the lib directory to lib_small.

2. Rename the lib_debug directory to lib.

7.1.2  Building the Libraries
The following example shows the steps for rebuilding the libraries under solaris with -O2 optimization.

1. Source the appropriate env.sh, for example:
$ source /sw_tools-2.x.x/env.sh

2. Change the directory to the rtlib directory, where Make file resides.
$ cd /sw_tools-2.x.x/src/rtlib/

3. Edit the CFLAGS variable in Makefile to match your desired compiler options.
CFLAGS = -O2

4. Run Make.
$ make install

Note: The libraries are copied into the lib directory by the Make install command, thereby overwriting 
any existing libraries in the lib directory. You can only build the libraries in the Solaris 
environment.

7.2   Character Typing and Conversion (ctype.h)
The ctype.h library contains the following function types:

• Testing functions

• Conversion functions
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7.2.1  Testing Functions
Table 7-3 lists the testing functions that the compiler supports. 

7.2.2  Conversion Functions
Table 7-4 lists the conversion functions that the compiler supports.

Table 7-3.   Testing Functions

Function Purpose

int isalnum(int) Tests for isalpha or isdigit

int isalpha(int) Tests for isupper or islower

int iscntrl(int) Tests for any control character

int isdigit(int) Tests for decimal digit character

int isgraph(int) Tests for any printing character except space

int islower(int) Tests for lowercase alphabetic character

int isprint(int) Tests for any printing character including space

int ispunct(int) Tests for any printing character not space and not isalnum

int isspace(int) Tests for white-space characters

int isupper(int) Tests for uppercase alphabetic character

int isxdigit(int) Tests for hexadecimal digit character

Table 7-4.   Conversion Functions

Function Purpose

int tolower(int) Converts uppercase alphabetic character to the equivalent lower case character

int toupper(int) Converts lowercase alphabetic character to the equivalent uppercase character
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7.3   Floating Point Characteristics (float.h)
The compiler represents floating point numbers using IEEE format (ANSI/IEEE Std 754-1985). Only 
single precision floating point format is supported.

The contents of float.h are listed in Table 7-5.

Table 7-5.   Contents of File float.h

Constant Value Purpose

FLT_DIG
DBL_DIG
LDBL_DIG

6
15
15

Number of decimal digits of precision 

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

1.19209290E-07F
2.2204460492503131E-16

2.2204460492503131E-16L

Minimum positive number χ such that 1.0 + χ does not 
equal 1.0 

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

24
53
53

Number of base-2 digits in the mantissa 

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

38
308
308

Maximum positive integers n such that 10n is 
representable 

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

128
1024
1024

Maximum positive integer n such that 2n-1 is 
representable 

FLT_MAX
DBL_MAX
LDBL_MAX

3.40282347E+38F
1.7976931348623157E+308

1.7976931348623157E+308L

Maximum positive floating point number 

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

(-37)
(-307)
(-307)

Minimum negative integer n such that 10n is 
representable 

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

(-125)
(-1021)
(-1021)

Minimum negative integer n such that 2n-1 is 
representable 

FLT_MIN
DBL_MIN
LDBL_MIN

1.175494351E-38F
2.2250738585072014E-308

2.2250738585072014E-308L

Minimum positive number 

FLT_RADIX
FLT_ROUNDS

2
-1

Floating point exponent is expressed n radix 2. 
Floating point rounding is to nearest even number.
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7.3.1  Floating Point Library Interface (fltmath.h)
This header file defines the software floating point library interface. Most of these functions are called by 
the code generator of the compiler for floating point expression evaluation. They may also be called 
directly by user code.

The floating point library supports the full IEEE-754 single-precision floating point standard.

Three configuration parameters and one status word can be used. Each of these is described in the 
following sections.

• Round_Mode

• FLUSH_TO_ZERO

• IEEE_Exceptions

• EnableFPExceptions

7.3.1.1   Round_Mode
Four rounding modes are supported:

• ROUND_TO NEAREST_EVEN. The representable value nearest to the infinitely precise intermediate 
value is the result. If the two nearest representable values are equally near (tie), then the one with the 
least significant bit equal to zero (even) is the result.

• ROUND_TOWARDS_ZERO. The result is the value closest to, and no greater in magnitude than, the 
infinitely precise intermediate result.

• ROUND_TOWARDS_MINUS_INF. The result is the value closest to and no greater than the infinitely 
precise intermediate result (possibly minus infinity).

• ROUND_TOWARDS_PLUS_INF. The result is the value closest to and no less than the infinitely precise 
intermediate result (possibly plus infinity).

By default, the rounding mode is set to ROUND_TO_NEAREST_EVEN.

Following is an example of changing the round mode to ROUND_TOWARDS_MINUS_INF:

Example 7-1.   Changing the round mode

#include <fltmath.h>
. . . 
Round_Mode = ROUND_TOWARDS_MINUS_INF.
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7.3.1.2   FLUSH_TO_ZERO
This is a boolean configuration item that sets the behavior of un-normalized numbers. When set to true 
(default) all un-normalized values are flushed to zero. This leads to better performance, but a smaller 
dynamic range.

For example, to disable the FLUSH_TO_ZERO option, you would specify the following:

Example 7-2.   Disabling flushing to zero

#include <fltmath.h>
. . .
FLUSH_TO_ZERO = 0;

7.3.1.3   IEEE_Exceptions
This is a status word that represents the IEEE exceptions that were raised during the last floating point 
operation. By default, the floating point library sets these values but does not handle any of these 
exceptions.

The following exceptions are supported:

• IEEE_Inexact

• IEEE_Divide_By_Zero

• IEEE_Underflow

• IEEE_Overflow

• IEEE_Signaling_Nan

See the IEEE standard for the exact description of these exceptions.

Following is an example of how to use the exception status word:

Example 7-3.   Using the exception status word

#include <fltmath.h>
float x,y;
. . . 
x = x*y;
if (IEEE_Exceptions & IEEE_Overflow)
{
<handle overflow>
}
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7.3.1.4   EnableFPExceptions
This is a bit field mask. Setting a flag enables raising an SIGFPE signal if the last FP operation raised this 
exception. For example:

Example 7-4.   Setting a signal for exceptions

#include <fltmath.h>
#include <signal.h>
void SigFPHandler(int x)
{
switch (IEEE_Exceptions)
{
case IEEE_Overflow:
. . . 
case IEEE_Divide_by_zero:
. . . 
}
}
float x,y;
. . . 
EnableFPExceptions = IEEE_Overflow | IEEE_Divide_by_zero;
signal(SIGFPE, SigFPHandler)
x = x*y /*This will raise SIGFPE if overflow or divide by zero occur */

This example installs a signal for handling overflow and divide by zero exceptions.

Note: Because the signal handling installs the handler address into the interrupt table, this example works 
only if the interrupt vector table is located in RAM. If the call to SIGNAL is not able to install the 
new handler, SIG_ERR is returned.
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7.4   Integer Characteristics (limits.h)
The contents of limits.h are listed in Table 7-6.

7.5   Locales (locale.h)
Table 7-7 lists the locales functions that the compiler supports.

Table 7-7.   Locale Functions

Note: These functions are supported for compatibility purposes, and have no effect.

Table 7-6.   Contents of File limits.h

Constant Value Purpose

CHAR_BIT 8 Width of char type, in bits 

CHAR_MAX
CHAR_MIN

127
-128

Maximum value for char 
Minimum value for char 

INT_MAX
INT_MIN
UINT_MAX

2147483647
(-2147483647-1)

4294967295u

Maximum value for int 
Minimum value for int 
Maximum value for unsigned int 

LONG_MAX
LONG_MIN
ULONG_MAX

2147483647
(-2147483647-1)

4294967295uL

Maximum value for long int 
Minimum value for long int 
Maximum value for unsigned long int 

MB_LEN_MAX 2 Maximum number of bytes in a multibyte character 

SCHAR_MAX
SCHAR_MIN
UCHAR_MAX

127
-128
255

Maximum value for signed char 
Minimum value for signed char 
Maximum value for unsigned char 

SHRT_MAX
SHRT_MIN
USHRT_MAX

32767
-32768
65535u

Maximum value for short int 
Minimum value for short int 
Maximum value for unsigned short int 

Function Purpose

localeconv(void)

setlocale(int category, const char* locale)
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7.6   Floating Point Math (math.h)
The math.h library contains the following function types:

• Trigonometric functions 

• Hyperbolic functions 

• Exponential and logarithmic functions 

• Power functions 

• Other functions 

The compiler runtime environment fully implements the math.h library using floating point emulation.

7.6.1  Trigonometric Functions
Table 7-8 lists the trigonometric functions that the compiler supports.

7.6.2  Hyperbolic Functions
Table 7-9 lists the hyperbolic functions that the compiler supports.

Table 7-8.   Trigonometric Functions

Function Purpose

double acos(double) arc cosine 

double asin(double) arc sine 

double atan(double) arc tangent 

double atan2(double, double) arc tangent2 

double cos(double) cosine 

double sin(double) sine 

double tan(double) tangent 

Table 7-9.   Hyperbolic Functions

Function Purpose

double cosh(double) Hyperbolic cosine 

double sinh(double) Hyperbolic sine 

double tanh(double) Hyperbolic tangent 
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7.6.3  Exponential and Logarithmic Functions
Table 7-10 lists the exponential and logarithmic functions that the compiler supports.

7.6.4  Power Functions
Table 7-11 lists the power functions that the compiler supports.

7.6.5  Other Functions
Table 7-12 lists the other functions that the compiler supports.

Table 7-10.   Exponential and Logarithmic Functions

Function Purpose

double exp(double) Exponential 

double frexp(double, int*) Splits floating point into fraction and exponent 

double ldexp(double, int) Computes value raised to a power

double log(double) Natural logarithm 

double log10(double) Base ten (10) logarithm 

double modf(double, double*) Splits floating point into fraction and integer

Table 7-11.   Power Functions

Function Purpose

double pow(double, double) Raises value to a power

double sqrt(double) Square root 

Table 7-12.   Other Functions

Function Purpose

double ceil(double) Ceiling

double fabs(double) Floating point absolute number 

double floor(double) Floor 

double fmod(double, double) Floating point remainder 
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7.7   Nonlocal Jumps (setjmp.h)
Table 7-13 lists the nonlocal jumps that the compiler supports.

7.8   Signal Handling (signal.h)
Table 7-14 lists the signal handling that the compiler supports. 

7.9   Variable Arguments (stdarg.h)
Table 7-15 lists the variable arguments that the compiler supports.

Table 7-13.   Nonlocal Jumps

Function Purpose

typedef unsigned int jmp_buf[32] Buffer used to save the 
execution context 

void longjmp(jmp_buf, int) Nonlocal jump 

int setjmp(jmp_buf) Nonlocal return 

Table 7-14.   Signal Handling (signal.h)

Function Purpose

int raise(int) Raises a signal

void(*signal(int, void (*)( int ))) (int) Installs a signal handler

Table 7-15.   Variable Arguments (stdarg.h)

Function Purpose

va_arg(_ap, _type) (*(_type*)((_ap) -= sizeof(_type))) Returns next parameter in 
argument list

va_end(_ap) (void)0 Performs cleanup of argument 
list

va_list Type declaration of variable 
argument list

va_start(_ap, _parmN) (void)(_ap = (char*)&_parmN) Performs initialization of 
argument list
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7.10   Standard Definitions (stddef.h)
Table 7-16 lists the standard definitions that the compiler supports.

7.11   I/O Library (stdio.h)
The stdio.h library contains the following function types:

• Input functions

• Stream functions

• Output functions

• Miscellaneous I/O functions

7.11.1  Input Functions
Table 7-17 lists the input functions that the compiler supports.

Table 7-16.   Standard Definitions (stddef.h)

Function Purpose

NULL((void*)0) Null pointer constant

offsetof(type, member) Field offset in bytes from start of structure

typedef int ptrdiff_t Signed integer type resulting from the 
subtraction of two pointers

typedef unsigned int size_t Unsigned integer type that is the data type of 
the sizeof operator

typedef unsigned short wchar_t Wide character type, as defined in ISO C

Table 7-17.   Input Functions

Function Purpose

char* fgets(char*, int, FILE*) Reads characters to the specified 
stream

int fgetc(FILE*) Inputs a single character if available 
from specified stream

size_t fread(void*, size_t, size_t, FILE*) Inputs a size number of characters from 
stdin

int fscanf(FILE*, const char*, ...) Inputs text from the specified stream

int getc(FILE*) Inputs a single character if available 
from specified stream

int getchar(void) Inputs a single character if available 
from stdin

int scanf(const char*, ...) Inputs text from stdin

int sscanf(const char*, const char*, ...) Inputs text from specified string
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7.11.2  Stream Functions
Table 7-18 lists the stream functions that the compiler supports.

Table 7-18.   Stream Functions

Function Purpose

void clearerr(FILE*) Clears the EOF and error indicators for the 
specified stream

int fclose(FILE*) Flushes the specified stream and closes the file 
associated with it

int feof(FILE*) Tests the EOF indicator for the specified stream

int ferror(FILE*) Tests the error indicator for the specified stream

int fgetpos(FILE*, fpos_t*) Stores the current value of the file position 
indicator for the specified stream

FILE* freopen(const char*,const char*,FILE*) Opens the specified file in the specified mode, 
using the specified stream

int fseek(FILE*, long int, int) Sets the file position indicator for the specified 
stream

int fsetpos(FILE*, const fpos_t*) Sets the file position indicator for the specified 
stream to the specified value

long int ftell(FILE*) Retrieves the current value of the file position 
indicator for the current stream

int remove(const char*) Makes the specified file unavailable by its defined 
name

int rename(const char*, const char*) Assigns to the specified file a new filename

void rewind(FILE*) Sets the file position indicator for the specified 
stream to the beginning of the file

void setbuf(FILE*, char*) Defines a buffer and associates it with the 
specified stream. A restricted version of 
setvbuf()

int setvbuf(FILE*, char*, int, size_t) Defines a buffer and associates it with the 
specified stream

stderr Standard error stream (Value = 3)

stdin Standard input stream (Value = 1)

stdout Standard output stream (Value = 2)

FILE* tmpfile(void) Creates a temporary file

char* tmpnam(char*) Generates a valid filename, meaning a filename 
that is not in use, as a string
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7.11.3  Output Functions
Table 7-19 lists the output functions that the compiler supports.

7.11.4  Miscellaneous I/O Functions
Table 7-20 lists the miscellaneous I/O functions that the compiler supports.

Table 7-19.   Output Functions

Function Purpose

int fprintf(FILE*, const char*, ...) Outputs the specified text to the 
specified stream

int fputc(int, FILE*) Outputs a single character to the 
specified stream

int fputs(const char*, FILE*) Outputs a string to the specified stream

size_t fwrite(const void*, size_t, size_t, FILE*) Outputs a size number of characters to 
stdout

char* gets(char*) Reads characters into the user’s buffer

void perror(const char*) Outputs an error message

int printf(const char*, ...) Outputs the specified text to stdout

int putc(int, FILE*) Outputs a single character to the 
specified stream

int putchar(int) Outputs a single character

int puts (const char*) Outputs the string to stdout, followed 
by a newline

int sprintf(char*, const char*, ...) Outputs the specified text to the 
specified buffer

int vfprintf(FILE*, const char*, va_list) Outputs the variable arguments to the 
specified stream

int vprintf(const char*, va_list) Outputs the variable arguments to 
stdout

int vsprintf(char*, const char*, va_list) Outputs the variable arguments to the 
specified buffer

Table 7-20.   Miscellaneous I/O Functions

Function Purpose

int fflush(FILE*) Causes the output buffers to be emptied to 
their destinations

FILE* fopen(const char*, const char*) Associates a stream with a file

int ungetc(int, FILE*) Moves the character back to the head of the 
input stream
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7.12   General Utilities (stdlib.h)
The stdlib.h library contains the following function types:

• Memory allocation functions 

• Integer arithmetic functions 

• String conversion functions 

• Searching and sorting functions 

• Pseudo random number generation functions 

• Environment functions 

• Multibyte functions 

7.12.1  Memory Allocation Functions
Table 7-21 lists the memory allocation functions that the compiler supports.

7.12.2  Integer Arithmetic Functions
Table 7-22 lists the integer arithmetic functions that the compiler supports.

Table 7-21.   Memory Allocation Functions

Function Purpose

void free(void*) Returns allocated space to heap

void* calloc(size_t, size_t) Allocates heap space initialized to zero

void* malloc(size_t) Allocates heap space

void* realloc(void*, size_t) Allocates a larger heap space and returns 
previous space to heap

Table 7-22.   Integer Arithmetic Functions

Function Purpose

int abs(int) Absolute value 

div_t div(int, int) Quotient and remainder 

long labs(long int) Computes absolute value and returns as 
long

ldiv_t ldiv(long int, long int) Quotient and remainder of long int 
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7.12.3  String Conversion Functions
Table 7-23 lists the string conversion functions that the compiler supports.

7.12.4  Searching and Sorting Functions
Table 7-24 lists the searching and sorting functions that the compiler supports.

7.12.5  Pseudo Random Number Generation Functions
Table 7-25 lists the pseudo random number generation functions that the compiler supports.

Table 7-23.   String Conversion Functions

Function Purpose

double atof(const char*) String to float 

int atoi(const char*) String to int 

long int atol(const char*) Long 

double strtod(const char*, char**) Double 

long int strtol(const char*, char**, int) Long 

unsigned long int strtoul(const char*, char**, int) Unsigned long 

Table 7-24.   Searching and Sorting Functions

Function Purpose

void *bsearch(const void*, const void*, size_t, size_t, 
int(*)(const void*, const void*))

Binary search 

void *qsort(void*, size_t, size_t, int(*)(const void*, 
const void*))

Quick sort 

Table 7-25.   Pseudo Random Number Generation Functions

Function Purpose

int rand(void) Random number generator

void srand(unsigned int) Initializes the random number generator
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7.12.6  Environment Functions
Table 7-26 lists the environment functions that the compiler supports.

7.12.7  Multibyte Character Functions
Table 7-27 lists the multibyte character functions that the compiler supports.

7.13   String Functions (string.h)
The string.h library contains the following function types:

• Copying functions 

• Concatenation functions 

• Comparison functions 

• Search functions 

• Other functions 

Table 7-26.   Environment Functions

Function Purpose

void abort(void) Causes an abnormal termination

int atexit(void (*)(void)) Registers a function to be called at 
normal termination

void exit(int) Causes a normal termination

char *getenv(const char *name)1

1. This function is supported for compatibility purposes and has no effect.

Gets environment variable

int system(const char *string)1 Passes command to host environment

Table 7-27.   Multibyte Character Functions

Function Purpose

int mblen(const char*, size_t) Multibyte string length

size_t mbstowcs(wchar_t*, const char*, size_t) Converts multibyte string to wide 
character string

int mbtowc(wchar_t*, const char*, size_t) Converts multibyte to wide character

int wctomb(char*, wchar_t) Converts wide character to multibyte

size_t wcstombs (char*, const wchar_t*, size_t) Converts wide character string to 
multibyte string
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7.13.1  Copying Functions
Table 7-28 lists the copying functions that the compiler supports.

7.13.2  Concatenation Functions
Table 7-29 lists the concatenation functions that the compiler supports.

7.13.3  Comparison Functions
Table 7-30 lists the comparison functions that the compiler supports.

Table 7-28.   Copying Functions

Function Purpose

void* memcpy(void*, const void*, size_t) Copies data

void* memmove(void*, const void*, size_t) Swaps data

char* strcpy(char*, const char*) Copies a string

char* strncpy(char*, const char*, size_t) Copies a string of a maximum length

Table 7-29.   Concatenation Functions

Function Purpose

char* strcat(char*, const char*) Concatenates a string to the end of another 
string

char* strncat(char*, const char*, size_t) Concatenates a string of specified maximum 
length to the end of another string

Table 7-30.   Comparison Functions

Function Purpose

int memcmp(const void*, const void*, size_t) Compares data

int strcmp(const char*, const char*) Compares strings

int strcoll(const char*, const char*) Compares strings based on locale

int strncmp(const char*, const char*, size_t) Compares strings of maximum length

size_t strxfrm(char*, const char*, size_t) Transforms a string into a second string of 
the specified size
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7.13.4  Search Functions
Table 7-31 lists the search functions that the compiler supports.

7.13.5  Other Functions
Table 7-32 lists the other functions that the compiler supports.

Table 7-31.   Search Functions

Function Purpose

void* memchr(const void*, int, size_t) Searches for a value in the first number of 
characters

char* strchr(const char*, int) Searches a string for the first occurrence of 
char

size_t strcspn(const char*, const char*) Searches a string for the first occurrence of 
char in string set and returns the number of 
characters skipped

char strpbrk(const char*, const char*) Searches a string for the first occurrences of 
char in string set and returns a pointer to 
that location

char* strrchr(const char*, int) Searches a string for the last occurrence of 
char

size_t strspn(const char*, const char*) Searches a string for the first occurrence of 
char not in string set.

char* strstr(const char*, const char*) Searches a string for the first occurrence of 
string

char* strtok(char*, const char*) Separates a string into tokens

Table 7-32.   Other Functions

Function Purpose

void* memset(void*, int, size_t) Copies a value into each number of 
characters

char* strerror(int) Returns string for associated error condition

size_t strlen(const char*) Returns size of string
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7.14   Time Functions (time.h)
Table 7-33 lists the time functions that the compiler supports.

7.14.1  Time Constant
Table 7-34 shows the time constant that the compiler supports.

7.14.2  Process Time
The clock function returns the current value of the system timer. This function must be configured to 
match the actual system timer configuration. The timer is started and set for a maximum period during the 
initialization of any C program that references the clock function, and is used only by this function. The 
return value of clock has type clock_t, which is unsigned long.

The following example shows how to use the clock function to time your application:

Example 7-5.   Timing an application

#include <time.h>
clock_t start, end, elapsed;
/* . . . application setup . . . */
start = clock( );
/* . . . application processing . . . */
end = clock( );
elapsed = end - start; /* Assumes no wrap-around */
printf("Elapsed time: %Lu * 2 cycles. \n", elapsed);

Table 7-33.   Time Functions

Function Purpose

char *asctime(const struct tm *timeptr) Converts time to ASCII representation

clock_t clock() Returns processor time

typedef unsigned long clock_t Type used for measuring time

char *ctime (const time_t *timer) Converts time to ASCII representation

double difftime(time_t time1, time_t time0) Returns difference in seconds

time_t mktime(struct tm *timeptr) Converts struct tm to time_t

size_t strftime (char *s, size_t maxsize, 
const char *format, const struct tm *timeptr)

Converts an ASCII string to time_t

time_t time(time_t *timer) Returns processor time (same as clock)

typedef unsigned long time_t Type used for measuring time

struct tm *gmtime(const time_t *timer) Returns time in GMT time zone

struct tm *localtime(const time_t *timer) Returns time in local time zone

Table 7-34.   Time Constant

Constant Value Purpose

CLOCKS_PER_SEC TBD
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7.15   Built-in Intrinsic Functions (prototype.h)
The compiler supports a set of built-in intrinsic functions that enable fractional operations to be 
implemented using integer data types, by mapping directly to SC100 assembly instructions.

Table 7-35 lists these built-in intrinsic functions.

Table 7-35.   Built-in Intrinsic Functions

Function Purpose

short abs_s(short var1) Short absolute value of var1. For example, the result of 
abs_s(-32768)is +32767.

short add(short var1,short var2) Short add. Performs the addition var1+var2 with overflow 
control and saturation. The 16-bit result is set at +32767 
when overflow occurs, or at -32768 when underflow 
occurs. 

BitReverseUpdate Increments the iterator with bit reverse.

Word64 D_add(Word64 D_var1,
Word64 D_var2)

Double precision add. Performs the addition 
D_var1+D_var2 with overflow control and saturation. 

short D_cmpeq(Word64 D_var1,
Word64 D_var2)

Double precision compare equal. Compares two 64-bit 
values and returns a 16-bit result containing the value ??? 
if the values are equal, or ??? if they are not.

short D_cmpgt(Word64 D_var1,
Word64 D_var2)

Double precision compare greater than. Compares two 
64-bit values and returns a 16-bit result containing ???.

long D_extract_h(Word64 D_var1) Double precision extract high. Returns the 32 MSB of the 
64-bit value D_var1.

unsigned long D_extract_l
(Word64 D_var1)

Double precision extract low. Returns the 32 LSB of the 
64-bit value D_var1 as an unsigned 32-bit value.

Word64 D_mac(Word64 D_var3,
long L_var1,long L_var2)

Double precision multiply accumulate. Multiplies L_var1 
by L_var2 and shifts the result left by 1. Adds the 64-bit 
result to L_var3 with saturation, and returns a 64-bit result. 
For example: 
D_mac(D_var3,L_var1,L_var2) = 
D_add(D_var3,D_mult(L_var1,L_var2)).

Word64 D_msu(Word64 D_var3,
long L_var1,long L_var2)

Double precision multiply subtract. Multiplies L_var1 by 
L_var2 and shifts the result left by 1. Subtracts the 64-bit 
result from D_var3 with saturation, and returns a 64-bit 
result. For example: 
D_msu(D_var3,L_var1,L_var2) = 
D_sub(D_var3,D_mult(L_var1,L_var2)).

Word64 D_mult(long L_var1,long L_var2) Double precision multiply. The 64-bit result of the 
multiplication of L_var1 by L_var2 with one shift left, for 
example: D_mult(L_var1,L_var2) = 
D_shl((L_var1*L_var2),1).

long D_round(Word64 D_var1) Double precision round. Rounds the lower 32 bits of the 
64-bit D_var1 into the MS 32 bits with saturation. Shifts the 
resulting bits right by 32 and returns the 32-bit value.

Word64 D_sat(Word64 D_var1) Double precision saturation. Saturates a 64-bit value.
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Word64 D_set(long L_var1,
unsigned long L_var2)

Double precision concatenation. Concatenates two 32-bit 
values, L_var1 and unsigned L_var2, into one 64-bit 
value.

Word64 D_sub(Word64 D_var1,
Word64 D_var2)

Double precision subtract. 64-bit subtraction of the two 
64-bit variables (D_var1-D_var2) with overflow control 
and saturation. 

void debug() Generates assembly instruction to enter Debug mode.

void debugev() Generates assembly instruction to issue Debug event.

void di() Generates assembly instruction to disable interrupts.

short div_s(short var1,short var2) Short divide. Produces a result which is the fractional 
integer division of var1 by var2; var1 and var2 must be 
positive, and var2 must be greater or equal to var1. The 
result is positive (leading bit equal to 0) and truncated to 16 
bits. If var1 = var2 then div(var1,var2) = 32767.

void ei() Generates assembly instruction to enable interrupts.

EndBitReverse Frees bit reverse iterator.

short extract_h(long L_var1) Long extract high. Returns the 16 MSB of L_var1.

short extract_l(long L_var1) Long extract low. Returns the 16 LSB of L_var1.

void illegal() Generates assembly instruction to execute illegal 
exception.

InitBitReverse Allocates a bit reverse iterator.

long L_abs(long L_var1) Long absolute value of L_var1. Saturates in cases where 
the value is -214783648.

long L_add(long L_var1,long L_var2) Long add. 32-bit addition of the two 32-bit variables 
(L_var1+L_var2) with overflow control and saturation. 
The result is set at +2147483647 when overflow occurs, or 
at -2147483648 when underflow occurs.

long L_deposit_h(short var1) Deposit short in MSB. Deposits the 16-bit var1 into the 16 
MS bits of the 32-bit output. The 16 LS bits of the output 
are zeroed.

long L_deposit_l(short var1) Deposit short in LSB. Deposits the 16-bit var1 into the 16 
LS bits of the 32-bit output. The 16 MS bits of the output 
are sign extended.

long L_mac(long L_var3,short var1,
short var2)

Multiply accumulate. Multiplies var1 by var2 and shifts 
the result left by 1. Adds the 32-bit result to L_var3 with 
saturation, and returns a 32-bit result. For example: 
L_mac(L_var3,var1,var2) = 
L_add(L_var3,L_mult(var1,var2)).

long L_max(long L_var1,long L_var2) Compares the values of two 32-bit variables and returns 
the higher value of the two.

long L_min(long L_var1,long L_var2) Compares the values of two 32-bit variables and returns 
the lower value of the two.

Table 7-35.   Built-in Intrinsic Functions (Continued)
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long L_msu(long L_var3,short var1,
short var2)

Multiply subtract. Multiplies var1 by var2 and shifts the 
result left by 1. Subtracts the 32-bit result from L_var3 with 
saturation, and returns a 32-bit result. For example: 
L_msu(L_var3,var1,var2) = 
L_sub(L_var3,L_mult(var1,var2)).

long L_mult(short var1,short var2) Long multiply. The 32-bit result of the multiplication of var1 
by var2 with one shift left, for example: 
L_mult(var1,var2)= L_shl((var1*var2),1)

and L_mult(-32768,-32768) = 2147483647.

long L_negate(long L_var1) Long negate. Negates the 32-bit variable L_var1 with 
saturation. Saturates in cases where the value is 
-2147483648(0x8000 0000).

long L_rol(long L_var1) Long rotate left. Rotates the 32-bit variable L_var1 left into 
a 40-bit value, and returns a 32-bit result..

long L_ror(long L_var1) Long rotate right. Rotates the 32-bit variable L_var1 right 
into a 40-bit value, and returns a 32-bit result.

long L_sat(long L_var1) Saturates a 32-bit value.

long L_shl(long L_var1,short var2) Long shift left. Arithmetically shifts the 32-bit L_var1 left 
var2 positions. Zero fills the var2 LSB of the result. If 
var2 is negative, arithmetically shifts L_var1 right by 
var2 with sign extension. Saturates the result in cases 
where underflow or overflow occurs. 

long L_shr(long L_var1,short var2) Long shift right. Arithmetically shifts the 32-bit L_var1 right 
var2 positions with sign extension. If var2 is negative, 
arithmetically shifts L_var1 left by var2 and zero fills the 
var2 LSB of the result. Saturates the result in cases where 
underflow or overflow occurs. 

long L_shr_r(long L_var1,short var2) Long shift right and round. Same as 
L_shr(L_var1,var2) but with rounding. Saturates the 
result in cases where underflow or overflow occurs.

long L_sub(long L_var1,long L_var2) Long subtract. 32-bit subtraction of the two 32-bit variables 
(L_var1-L_var2) with overflow control and saturation. 
The result is set at +2147483647 when overflow occurs or 
at -2147483648 when underflow occurs.

short mac_r(long L_var3,short var1,
short var2)

Multiply accumulate and round. Multiplies var1 by var2 
and shifts the result left by 1. Adds the 32-bit result to 
L_var3 with saturation. Rounds the LS 16 bits of the result 
into the MS 16 bits with saturation and shifts the result right 
by 16. Returns a 16-bit result.

void mark() Generates assembly instruction to write program counter to 
trace buffer, if trace buffer enabled.

short max(short var1, short var2) Compares the values of two 16-bit variables and returns 
the higher value of the two.

short min(short var1, short var2) Compares the values of two 16-bit variables and returns 
the lower value of the two.

long mpyuu(long L_var1,long L_var2) Multiplies the 16 LSB of two 32-bit variables, treating both 
variables as unsigned values, and returns a 32-bit result.

Table 7-35.   Built-in Intrinsic Functions (Continued)
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long mpyus(long L_var1,long L_var2) Multiplies the 16 LSB of the 32-bit variable L_var1 , 
treated as an unsigned value, by the 16 MSB of the 32-bit 
variable L_var2, treated as a signed value. Returns a 
32-bit result.

long mpysu(long L_var1,long L_var2) Multiplies the 16 MSB of the 32-bit variable L_var1 , 
treated as a signed value, by the 16 LSB of the 32-bit 
variable L_var2, treated as an unsigned value. Returns a 
32-bit result.

short msu_r(long L_var3,short var1,
short var2)

Multiply subtract and round. Multiplies var1 by var2 and 
shifts the result left by 1. Subtracts the 32-bit result from 
L_var3 with saturation. Rounds the LS 16 bits of the result 
into the MS 16 bits with saturation and shifts the result right 
by 16. Returns a 16-bit result.

short mult(short var1,short var2) Short multiply. Performs the multiplication of var1 by var2 
and gives a 16-bit result which is scaled, for example: 
mult(var1,var2) = 

extract_l(L_shr((var1 * var2),15)) and 
mult(-32768,-32768) = 32767.

short mult_r(short var1,short var2) Multiply and round. Same as mult with rounding, for 
example: mult_r(var1,var2) = extract_l 
(L_shr(((var1*var2)+16384),15)) 
and mult_r(-32768,-32768) = 32767. 

short negate(short var1) Short negate. Negates var1 with saturation. Saturates in 
cases where the value is -32768, for example:
negate(var1) = sub(0,var1).

short norm_l(long L_var1) Normalizes any long fractional value. Produces the number 
of left shifts needed to normalize the 32-bit variable 
L_var1 for positive values on the interval with minimum of 
1073741824 and maximum of 2147483647, and for 
negative values on the interval with minimum of 
-2147483648 and maximum of -1073741824. In order to 
normalize the result, the following operation must be 
executed:
norm_L_var1 = L_shl(L_var1,norm_l(L_var1)).

short norm_s(short var1) Normalizes any fractional value. Produces the number of 
left shifts needed to normalize the 16-bit variable var1 for 
positive values on the interval with minimum of 16384 and 
maximum of 32767, and for negative values on the interval 
with minimum of -32768 and maximum of -16384. In 
order to normalize the result, the following operation must 
be executed: 
norm_var1 = shl(var1,norm_s(var1)). 

short round(long var1) Round. Rounds the lower 16 bits of the 32-bit number into 
the MS 16 bits with saturation. Shifts the resulting bits right 
by 16 and returns the 16-bit number, for example: 
round(L_var1) = 
extract_h(L_add(L_var1,32768)).

short saturate(short var1) Saturates a 16-bit value.

setcnvrm() Sets rounding mode to convergent rounding mode.
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set2crm() Sets rounding mode to two’s-complement rounding mode.

void setnosat() Clears saturation mode bit in status register. 

void setsat32() Sets saturation mode bit in status register.

short shl(short var1,short var2) Short shift left. Arithmetically shifts the 16-bit var1 left 
var2 positions. Zero fills the var2 LSB of the result. If 
var2 is negative, arithmetically shifts var1 right by var2 
with sign extension. Saturates the result in cases where 
underflow or overflow occurs. 

short shr(short var1,short var2) Short shift right. Arithmetically shifts the 16-bit var1 right 
var2 positions with sign extension. If var2 is negative, 
arithmetically shifts var1 left by var2 with sign extension. 
Saturates the result in cases where underflow or overflow 
occurs. 

short shr_r(short var1,short var2) Short shift right and round. Same as shr(var1,var2) but 
with rounding. Saturates the result in cases where 
underflow or overflow occurs. 

void stop() Generates assembly instruction to enter Stop low power 
mode.

short sub(short var1,short var2) Performs the subtraction with overflow control and 
saturation.The 16-bit result is set at +32767 when overflow 
occurs or at -32768 when underflow occurs.

void trap() Generates assembly instruction to execute Trap 
exception.

void wait() Generates assembly instruction to enter Wait low power 
mode.

Word40 X_abs(Word40 X_var1) 40-bit absolute value of X_var1.

Word40 X_add(Word40 X_var1,
Word40 X_var2)

Extended precision add. Performs the addition 
X_var1+X_var2 without saturation. .

short X_cmpeq(Word40 X_var1,
Word40 X_var2)

Extended precision compare equal. Compares two 40-bit 
values and returns a 16-bit result containing the value ??? 
if the values are equal, or ??? if they are not.

short X_cmpgt(Word40 X_var1,
Word40 X_var2)

Extended precision compare greater than. Compares two 
40-bit values and returns a 16-bit result containing ???.

Word40 X_extend(long L_var1) Sign extend 32-bit value to 40-bit value.

short X_extract_h(Word40 X_var1) Extended precision extract high. Returns the 16 MSB of the 
40-bit value X_var1.

short X_extract_l(Word40 X_var1) Extended precision extract low. Returns the 16 LSB of the 
40-bit value X_var1.

Word40 X_mac(Word40 X_var3,
short var1,short var2)

Extended precision multiply accumulate. Multiplies var1 by 
var2 and shifts the result left by 1. Adds the 40-bit result to 
X_var3 without saturation, and returns a 40-bit result. For 
example: X_mac(X_var3,var1,var2) = 
X_add(X_var3,X_mult(var1,var2)).
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Word40 X_msu(Word40 X_var3,
short var1,short var2)

Extended precision multiply subtract. Multiplies var1 by 
var2 and shifts the result left by 1. Subtracts the 40-bit 
result from var3 without saturation, and returns a 40-bit 
result. For example: X_msu(X_var3,var1,var2) = 
X_sub(X_var3,X_mult(var1,var2)).

Word40 X_mult(short var_1,short var_2) Extended precision multiply. The 40-bit result of the 
multiplication of var1 by var2 with one shift left, for 
example: X_mult(var1,var2) = 
X_shl((var1*var2),1).

short X_norm(Word40 X_var1) Normalizes a 40-bit fractional value.

Word40 X_or(Word40 X_var1,
Word40 X_var2)

Performs logical OR on two 40-bit values.

Word40 X_rol(Word40) Rotates left a 40-bit value.

Word40 X_ror(Word40) Rotates right a 40-bit value.

short X_round(Word40 X_var1) Extended precision round. Rounds the lower 16 bits of the 
40-bit number into the MS 16 bits without saturation. Shifts 
the resulting bits right by 16 and returns the 16-bit number.

long X_sat(Word40 X_var1) Extended precision saturation. Saturates a 40-bit value.

Word40 X_set(char var1,
unsigned long L_var2)

Extended precision concatenation. Concatenates an 8-bit 
character value and an unsigned 32-bit value into one 
40-bit value.

Word40 X_shl(Word40 X_var1,short var2) Extended shift left. Arithmetically shifts the 40-bit X_var1 
left var2 positions. Zero fills the var2 LSB of the result. If 
var2 is negative, arithmetically shifts X_var1 right by 
var2 with sign extension. 

Word40 X_shr(Word40 X_var1,short var2) Extended shift right. Arithmetically shifts the 40-bit X_var1 
right var2 positions with sign extension. If var2 is 
negative, arithmetically shifts X_var1 left by var2 and 
zero fills the var2 LSB of the result. 

Word40 X_sub(Word40 X_var1,
Word40 X_var1)

Extended precision subtract. 40-bit subtraction of the two 
40-bit variables (X_var1-X_var2) without saturation. 

long X_trunc(Word40 X_var1) Truncates 40-bit value into 32-bit value.
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Appendix A
Migrating from Other Environments

The SC100 C Compiler provides header files that make it easy to migrate C code developed for certain 
other compilers. The compilation and its results may be affected in various ways by the differences 
between specific compiler environments and the compiler. The effects may include, for example, 
assembler errors for inlined code that is not supported, or loss of efficiency for functions that are 
supported, but implemented in a different way.

This Appendix contains the following sections:

• Section A.1, “Code Migration Overview,” provides general guidelines for migrating code from 
another environment to the compiler.

• Section A.2, “Migrating Code Developed for DSP56600,” describes the issues to be considered 
when migrating code developed for the DSP56600 compiler family.

• Section A.3, “Migrating Code Developed for TI6xx,” describes the differences to take into account 
when migrating code developed for the TI6xx family of compilers.

A.1   Code Migration Overview 
In most circumstances, the compiler can successfully compile standard ANSI code that:

• Does not use compiler-specific extensions

• Does not rely implicitly on the sizes of data types

• Does not rely on system-specific features, such as memory maps or peripherals

• Does not rely on undefined compiler behavior

The compiler runtime libraries include a header file for each environment for which code is accepted, as 
follows:

• DSP56600 compilers: port566toSC1.h header file

• TI6xx compilers: portc6xtoSC1.h header file
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The features used in the specified environment are defined in the relevant header file with correct values, 
to ensure that the code is not affected and compiles successfully.

To use these definitions, just include the appropriate header file to your source code. For example, when 
migrating code from the DSP56600 compiler environment, include the port566toSC1.h header file, as 
shown in Example A-1.

Example A-1.   Migrating code from other environments

#include <port566toSC1.h>
void main()
{
}

A.2   Migrating Code Developed for DSP56600
When using the SC100 C Compiler with code developed for the DSP56600 family of compilers, the 
following differences should be taken into account:

• Integer data types: The DSP56600 and SC100 compilers map certain integer data types to different 
sizes. Table A-1 lists the data type size discrepancies that relate to integers:

• Fractional data types: DSP56600 compilers use built-in data types for declaring fractional 
variables. The SC100 C Compiler uses standard integer types for both fractional and integer values. 
Table A-2 lists the fractional data type differences:

• Floating point data types: DSP56600 compilers represent floating point data types according to a 
32-bit proprietary format. The SC100 C Compiler maps fractional data types to a single-precision 
IEEE-754 type, using 32 bits. As a result, there may be differences in the numerical accuracy of 
floating point calculations.

Table A-1.   DSP56600 Integer Data Type Differences

Data Type DSP56600 Compiler SC100 C Compiler

char
unsigned char

Saved in memory as 16 bits. Some 
operations are performed with 16 bits, 
others with 8.

8 bits

packed char 8 bits Not supported

int
unsigned int

16 bits 32 bits

enum 16 bits 32 bits

Table A-2.   DSP56600 Fractional Data Type Differences

Data Type DSP56600 Compiler SC100 C Compiler

16-bit fraction _fract Word16

32-bit fraction long_fract Word32

40-bit accumulator long_fract Word40

64-bit fraction Not supported Word64

Complex fractions _complex Not supported directly
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• Pointers: The difference in pointer size between the two compilers is shown in Table A-3:

In most circumstances, the difference in pointer size is unlikely to have any impact, since the 
relevant addresses are usually mapped to different numerical values on different processors.

• Fractional arithmetic: DSP56600 compilers support fractional arithmetic using integer-like 
operators, such as + and *. The SC100 C Compiler implements fractional operations through the use 
of intrinsic functions. Table A-4 lists the DSP56600 fractional operations and shows the equivalent 
SC100 C Compiler intrinsic functions:

The SC100 C Compiler supports many more fractional operations, including 40-bit and 64-bit 
fractional functions, which are not supported in the DSP56600 environment.

• Inlined assembly and C code: DSP56600 compilers use _inline and _asm to designate a 
C routine for inlining, and to define the instructions, operands and modifiers for inlined assembly 
statements. The SC100 C Compiler uses the pragma #pragma inline to specify an inlined 
function. See Chapter 4, “Interfacing C and Assembly Code,” for more information.

Table A-3.   DSP56600 Pointer Size Differences

Data Type DSP56600 Compiler SC100 C Compiler

pointer to char 16 bits 32 bits

pointer to short 16 bits 32 bits, even addresses only

pointer to long 16 bits 32 bits, quad addresses only

Table A-4.   DSP56600 Fractional Arithmetic Differences

Fractional Operation DSP56600 Compiler SC100C Compiler

Addition + Word16 add
Word32 L_add

Subtraction - Word16 sub
Word32 L_sub

Absolute value _fabs
_lfabs

Word16 abs_s 
Word32 L_abs

Multiplication * Word16 mult
Word32 L_mult
Word16 mult_r

Shift right >> Word16 shr
Word32 L_shr

Shift left << Word16 shl
Word32 L_shl

Negate - Word16 negate
Word32 L_negate

Round _fract_round Word16 round

Divide _pdiv Word16 div_s

Normalize Can be implemented using _asm Word16 norm_s
Word16 norm_l

Saturation control Can be implemented using _asm void setnosat
void setsat32
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• Intrinsic functions: The SC100 C Compiler library routines support a number of DSP56600 
intrinsic functions, as shown in Table A-5: 

• Pragmas: The functions of the DSP56600 inlined assembly pragmas asm, asm_noflush and 
endasm are supported by the SC100 C Compiler using a function qualifier. The SC100 C Compiler 
loop optimization pragma #pragma loop_count is the equivalent of the DSP56600 pragmas 
iterate_at_least_once and no_iterate_at_least_once. 

The following DSP56600 pragmas have no equivalent in the SC100 C Compiler environment:

— cache_align_now

— cache_sector_size

— cache_region_start

— cache_region_endpack_strings

— nopack_strings

— source

— nosource

— jumptable_memory

Table A-5.   DSP56600 Intrinsic Function Differences

Description DSP56600 Compiler SC100 C Compiler

Bit field operations _bfchg()
_bfclr()
_bfset()
_bftsth()
_bftstl()

Can be implemented by library routines

Cache control _cache_get_start()
_cache_get_end()
_pflush()
_pflushun()
_pfree()
_plock()
_punlock()

Not available

Fraction to integer coercion _fract2int()
_lfract2long

Not needed (both represented by integers)

Integer to fraction coercion _intt2fract()
_long2lfract()

Not needed (both represented by integers)

Extend byte in accumulator _ext() Not applicable

Fractional square root _fsqrt() Can be implemented by a library routine

String copy (inlined) _strcmp() Supported as a library routine (strcmp)

Absolute of long integer _labs labs()

Insert NOP instruction _nop() _asm(“nop”)

STOP instruction _stop() stop()

Software interrupt _swi() trap()

WAIT instruction _wait() wait()

Viterbi operation _vsl Can be implemented by a library routine
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• Interrupt handlers: The SC100 C Compiler pragma interrupt performs the function of both 
_fast_interrupt and _long_interrupt in the DSP56600 environment.

• Storage specifiers: The DSP56600 compilers support a number of storage specifiers, which are 
either not used in the SC100 environment, or are specified at link time, as shown in Table A-6:

• Miscellaneous: Table A-7 outlines some further differences between the two compilers:

Table A-6.   DSP56600 Storage Specifiers

Storage DSP56600 Compiler SC100 C Compiler

X memory _X Not applicable

Y_memory _Y Not applicable

Program memory _P Not applicable

L memory _L Not applicable

Lowest 64 words in data 
memory

_near Not applicable

Internal memory _internal Specified at link time

External memory _external Specified at link time

Absolute address for global 
variable

_at Specified at link time in the 
application configuration file

Table A-7.   DSP56600 Miscellaneous Differences

Description DSP56600 Compiler SC100 C Compiler

Wrap-around semantics for 
fractional data

_nosat Not applicable

Force DSP56300 GNU 
calling convention

_compatible Not applicable

Circular buffer support _circ Addressing calculations using 
the C modulo (%) operator
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A.3   Migrating Code Developed for TI6xx
The following differences should be considered when using the compiler with code developed for the 
TI6xx family of compilers:

• Data Types: TI6xx compilers map the integer type long to 40 bits. The compiler defines the integer 
type long as 32 bits. C code that relies on the fact that type long is 40 bits wide must be modified 
before it can be migrated.

• Keywords: The TI6xx keywords cregister, near and far are not supported by the compiler. 
When including the migration header file, these keywords are accepted but have no effect on the 
compilation results. 

The TI6xx keywords interrupt and inline are supported, but are implemented differently, using 
#pragma inline and #pragma interrupt. As a result, no automatic translation is provided. The 
code must be modified to use the pragmas supported by the compiler. For further information, see 
Section 3.4.5, “Pragmas,” on page 3-52.

• Pragmas: TI6xx pragmas are ignored. Warnings are issued, but the correctness of the compilation 
is not affected.

• Inlined assembly code: By definition, inlined assembly code is not portable from one environment 
to another. The SC100 Assembler is unable to recognize inlined TI6xx assembly code, and issues 
errors.

• Intrinsic functions: The TI6xx intrinsic functions listed in the portc6xtoSC1.h header file are 
supported. These are functionally equivalent to their corresponding TI6xx intrinsic functions, but 
their performance may be significantly affected.
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